Metamath Proof Explorer


Theorem kgencmp

Description: The compact generator topology is the same as the original topology on compact subspaces. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Assertion kgencmp J Top J 𝑡 K Comp J 𝑡 K = 𝑘Gen J 𝑡 K

Proof

Step Hyp Ref Expression
1 kgenftop J Top 𝑘Gen J Top
2 1 adantr J Top J 𝑡 K Comp 𝑘Gen J Top
3 kgenss J Top J 𝑘Gen J
4 3 adantr J Top J 𝑡 K Comp J 𝑘Gen J
5 ssrest 𝑘Gen J Top J 𝑘Gen J J 𝑡 K 𝑘Gen J 𝑡 K
6 2 4 5 syl2anc J Top J 𝑡 K Comp J 𝑡 K 𝑘Gen J 𝑡 K
7 cmptop J 𝑡 K Comp J 𝑡 K Top
8 7 adantl J Top J 𝑡 K Comp J 𝑡 K Top
9 restrcl J 𝑡 K Top J V K V
10 9 simprd J 𝑡 K Top K V
11 8 10 syl J Top J 𝑡 K Comp K V
12 restval 𝑘Gen J Top K V 𝑘Gen J 𝑡 K = ran x 𝑘Gen J x K
13 2 11 12 syl2anc J Top J 𝑡 K Comp 𝑘Gen J 𝑡 K = ran x 𝑘Gen J x K
14 simpr J Top J 𝑡 K Comp x 𝑘Gen J x 𝑘Gen J
15 simplr J Top J 𝑡 K Comp x 𝑘Gen J J 𝑡 K Comp
16 kgeni x 𝑘Gen J J 𝑡 K Comp x K J 𝑡 K
17 14 15 16 syl2anc J Top J 𝑡 K Comp x 𝑘Gen J x K J 𝑡 K
18 17 fmpttd J Top J 𝑡 K Comp x 𝑘Gen J x K : 𝑘Gen J J 𝑡 K
19 18 frnd J Top J 𝑡 K Comp ran x 𝑘Gen J x K J 𝑡 K
20 13 19 eqsstrd J Top J 𝑡 K Comp 𝑘Gen J 𝑡 K J 𝑡 K
21 6 20 eqssd J Top J 𝑡 K Comp J 𝑡 K = 𝑘Gen J 𝑡 K