Metamath Proof Explorer


Theorem kgencmp2

Description: The compact generator topology has the same compact sets as the original topology. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Assertion kgencmp2 J Top J 𝑡 K Comp 𝑘Gen J 𝑡 K Comp

Proof

Step Hyp Ref Expression
1 kgencmp J Top J 𝑡 K Comp J 𝑡 K = 𝑘Gen J 𝑡 K
2 simpr J Top J 𝑡 K Comp J 𝑡 K Comp
3 1 2 eqeltrrd J Top J 𝑡 K Comp 𝑘Gen J 𝑡 K Comp
4 cmptop 𝑘Gen J 𝑡 K Comp 𝑘Gen J 𝑡 K Top
5 restrcl 𝑘Gen J 𝑡 K Top 𝑘Gen J V K V
6 5 simprd 𝑘Gen J 𝑡 K Top K V
7 4 6 syl 𝑘Gen J 𝑡 K Comp K V
8 resttop J Top K V J 𝑡 K Top
9 7 8 sylan2 J Top 𝑘Gen J 𝑡 K Comp J 𝑡 K Top
10 toptopon2 J 𝑡 K Top J 𝑡 K TopOn J 𝑡 K
11 9 10 sylib J Top 𝑘Gen J 𝑡 K Comp J 𝑡 K TopOn J 𝑡 K
12 eqid J = J
13 12 kgenuni J Top J = 𝑘Gen J
14 13 adantr J Top 𝑘Gen J 𝑡 K Comp J = 𝑘Gen J
15 14 ineq2d J Top 𝑘Gen J 𝑡 K Comp K J = K 𝑘Gen J
16 12 restuni2 J Top K V K J = J 𝑡 K
17 7 16 sylan2 J Top 𝑘Gen J 𝑡 K Comp K J = J 𝑡 K
18 kgenftop J Top 𝑘Gen J Top
19 eqid 𝑘Gen J = 𝑘Gen J
20 19 restuni2 𝑘Gen J Top K V K 𝑘Gen J = 𝑘Gen J 𝑡 K
21 18 7 20 syl2an J Top 𝑘Gen J 𝑡 K Comp K 𝑘Gen J = 𝑘Gen J 𝑡 K
22 15 17 21 3eqtr3d J Top 𝑘Gen J 𝑡 K Comp J 𝑡 K = 𝑘Gen J 𝑡 K
23 22 fveq2d J Top 𝑘Gen J 𝑡 K Comp TopOn J 𝑡 K = TopOn 𝑘Gen J 𝑡 K
24 11 23 eleqtrd J Top 𝑘Gen J 𝑡 K Comp J 𝑡 K TopOn 𝑘Gen J 𝑡 K
25 simpr J Top 𝑘Gen J 𝑡 K Comp 𝑘Gen J 𝑡 K Comp
26 kgenss J Top J 𝑘Gen J
27 26 adantr J Top 𝑘Gen J 𝑡 K Comp J 𝑘Gen J
28 ssrest 𝑘Gen J Top J 𝑘Gen J J 𝑡 K 𝑘Gen J 𝑡 K
29 18 27 28 syl2an2r J Top 𝑘Gen J 𝑡 K Comp J 𝑡 K 𝑘Gen J 𝑡 K
30 eqid 𝑘Gen J 𝑡 K = 𝑘Gen J 𝑡 K
31 30 sscmp J 𝑡 K TopOn 𝑘Gen J 𝑡 K 𝑘Gen J 𝑡 K Comp J 𝑡 K 𝑘Gen J 𝑡 K J 𝑡 K Comp
32 24 25 29 31 syl3anc J Top 𝑘Gen J 𝑡 K Comp J 𝑡 K Comp
33 3 32 impbida J Top J 𝑡 K Comp 𝑘Gen J 𝑡 K Comp