Metamath Proof Explorer


Theorem kgencn2

Description: A function F : J --> K from a compactly generated space is continuous iff for all compact spaces z and continuous g : z --> J , the composite F o. g : z --> K is continuous. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion kgencn2 J TopOn X K TopOn Y F 𝑘Gen J Cn K F : X Y z Comp g z Cn J F g z Cn K

Proof

Step Hyp Ref Expression
1 kgencn J TopOn X K TopOn Y F 𝑘Gen J Cn K F : X Y k 𝒫 X J 𝑡 k Comp F k J 𝑡 k Cn K
2 rncmp z Comp g z Cn J J 𝑡 ran g Comp
3 2 adantl J TopOn X K TopOn Y F : X Y z Comp g z Cn J J 𝑡 ran g Comp
4 simprr J TopOn X K TopOn Y F : X Y z Comp g z Cn J g z Cn J
5 eqid z = z
6 eqid J = J
7 5 6 cnf g z Cn J g : z J
8 frn g : z J ran g J
9 4 7 8 3syl J TopOn X K TopOn Y F : X Y z Comp g z Cn J ran g J
10 toponuni J TopOn X X = J
11 10 ad3antrrr J TopOn X K TopOn Y F : X Y z Comp g z Cn J X = J
12 9 11 sseqtrrd J TopOn X K TopOn Y F : X Y z Comp g z Cn J ran g X
13 vex g V
14 13 rnex ran g V
15 14 elpw ran g 𝒫 X ran g X
16 12 15 sylibr J TopOn X K TopOn Y F : X Y z Comp g z Cn J ran g 𝒫 X
17 oveq2 k = ran g J 𝑡 k = J 𝑡 ran g
18 17 eleq1d k = ran g J 𝑡 k Comp J 𝑡 ran g Comp
19 reseq2 k = ran g F k = F ran g
20 17 oveq1d k = ran g J 𝑡 k Cn K = J 𝑡 ran g Cn K
21 19 20 eleq12d k = ran g F k J 𝑡 k Cn K F ran g J 𝑡 ran g Cn K
22 18 21 imbi12d k = ran g J 𝑡 k Comp F k J 𝑡 k Cn K J 𝑡 ran g Comp F ran g J 𝑡 ran g Cn K
23 22 rspcv ran g 𝒫 X k 𝒫 X J 𝑡 k Comp F k J 𝑡 k Cn K J 𝑡 ran g Comp F ran g J 𝑡 ran g Cn K
24 16 23 syl J TopOn X K TopOn Y F : X Y z Comp g z Cn J k 𝒫 X J 𝑡 k Comp F k J 𝑡 k Cn K J 𝑡 ran g Comp F ran g J 𝑡 ran g Cn K
25 3 24 mpid J TopOn X K TopOn Y F : X Y z Comp g z Cn J k 𝒫 X J 𝑡 k Comp F k J 𝑡 k Cn K F ran g J 𝑡 ran g Cn K
26 simplll J TopOn X K TopOn Y F : X Y z Comp g z Cn J J TopOn X
27 ssidd J TopOn X K TopOn Y F : X Y z Comp g z Cn J ran g ran g
28 cnrest2 J TopOn X ran g ran g ran g X g z Cn J g z Cn J 𝑡 ran g
29 26 27 12 28 syl3anc J TopOn X K TopOn Y F : X Y z Comp g z Cn J g z Cn J g z Cn J 𝑡 ran g
30 4 29 mpbid J TopOn X K TopOn Y F : X Y z Comp g z Cn J g z Cn J 𝑡 ran g
31 cnco g z Cn J 𝑡 ran g F ran g J 𝑡 ran g Cn K F ran g g z Cn K
32 31 ex g z Cn J 𝑡 ran g F ran g J 𝑡 ran g Cn K F ran g g z Cn K
33 30 32 syl J TopOn X K TopOn Y F : X Y z Comp g z Cn J F ran g J 𝑡 ran g Cn K F ran g g z Cn K
34 ssid ran g ran g
35 cores ran g ran g F ran g g = F g
36 34 35 ax-mp F ran g g = F g
37 36 eleq1i F ran g g z Cn K F g z Cn K
38 33 37 syl6ib J TopOn X K TopOn Y F : X Y z Comp g z Cn J F ran g J 𝑡 ran g Cn K F g z Cn K
39 25 38 syld J TopOn X K TopOn Y F : X Y z Comp g z Cn J k 𝒫 X J 𝑡 k Comp F k J 𝑡 k Cn K F g z Cn K
40 39 ralrimdvva J TopOn X K TopOn Y F : X Y k 𝒫 X J 𝑡 k Comp F k J 𝑡 k Cn K z Comp g z Cn J F g z Cn K
41 oveq1 z = J 𝑡 k z Cn J = J 𝑡 k Cn J
42 oveq1 z = J 𝑡 k z Cn K = J 𝑡 k Cn K
43 42 eleq2d z = J 𝑡 k F g z Cn K F g J 𝑡 k Cn K
44 41 43 raleqbidv z = J 𝑡 k g z Cn J F g z Cn K g J 𝑡 k Cn J F g J 𝑡 k Cn K
45 44 rspcv J 𝑡 k Comp z Comp g z Cn J F g z Cn K g J 𝑡 k Cn J F g J 𝑡 k Cn K
46 elpwi k 𝒫 X k X
47 46 adantl J TopOn X K TopOn Y F : X Y k 𝒫 X k X
48 47 resabs1d J TopOn X K TopOn Y F : X Y k 𝒫 X I X k = I k
49 idcn J TopOn X I X J Cn J
50 49 ad3antrrr J TopOn X K TopOn Y F : X Y k 𝒫 X I X J Cn J
51 10 ad3antrrr J TopOn X K TopOn Y F : X Y k 𝒫 X X = J
52 47 51 sseqtrd J TopOn X K TopOn Y F : X Y k 𝒫 X k J
53 6 cnrest I X J Cn J k J I X k J 𝑡 k Cn J
54 50 52 53 syl2anc J TopOn X K TopOn Y F : X Y k 𝒫 X I X k J 𝑡 k Cn J
55 48 54 eqeltrrd J TopOn X K TopOn Y F : X Y k 𝒫 X I k J 𝑡 k Cn J
56 coeq2 g = I k F g = F I k
57 56 eleq1d g = I k F g J 𝑡 k Cn K F I k J 𝑡 k Cn K
58 57 rspcv I k J 𝑡 k Cn J g J 𝑡 k Cn J F g J 𝑡 k Cn K F I k J 𝑡 k Cn K
59 55 58 syl J TopOn X K TopOn Y F : X Y k 𝒫 X g J 𝑡 k Cn J F g J 𝑡 k Cn K F I k J 𝑡 k Cn K
60 coires1 F I k = F k
61 60 eleq1i F I k J 𝑡 k Cn K F k J 𝑡 k Cn K
62 59 61 syl6ib J TopOn X K TopOn Y F : X Y k 𝒫 X g J 𝑡 k Cn J F g J 𝑡 k Cn K F k J 𝑡 k Cn K
63 45 62 syl9r J TopOn X K TopOn Y F : X Y k 𝒫 X J 𝑡 k Comp z Comp g z Cn J F g z Cn K F k J 𝑡 k Cn K
64 63 com23 J TopOn X K TopOn Y F : X Y k 𝒫 X z Comp g z Cn J F g z Cn K J 𝑡 k Comp F k J 𝑡 k Cn K
65 64 ralrimdva J TopOn X K TopOn Y F : X Y z Comp g z Cn J F g z Cn K k 𝒫 X J 𝑡 k Comp F k J 𝑡 k Cn K
66 40 65 impbid J TopOn X K TopOn Y F : X Y k 𝒫 X J 𝑡 k Comp F k J 𝑡 k Cn K z Comp g z Cn J F g z Cn K
67 66 pm5.32da J TopOn X K TopOn Y F : X Y k 𝒫 X J 𝑡 k Comp F k J 𝑡 k Cn K F : X Y z Comp g z Cn J F g z Cn K
68 1 67 bitrd J TopOn X K TopOn Y F 𝑘Gen J Cn K F : X Y z Comp g z Cn J F g z Cn K