Metamath Proof Explorer


Theorem kgenf

Description: The compact generator is a function on topologies. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Assertion kgenf 𝑘Gen : Top Top

Proof

Step Hyp Ref Expression
1 vuniex j V
2 1 pwex 𝒫 j V
3 2 rabex x 𝒫 j | k 𝒫 j j 𝑡 k Comp x k j 𝑡 k V
4 3 a1i j Top x 𝒫 j | k 𝒫 j j 𝑡 k Comp x k j 𝑡 k V
5 df-kgen 𝑘Gen = j Top x 𝒫 j | k 𝒫 j j 𝑡 k Comp x k j 𝑡 k
6 5 a1i 𝑘Gen = j Top x 𝒫 j | k 𝒫 j j 𝑡 k Comp x k j 𝑡 k
7 kgenftop x Top 𝑘Gen x Top
8 7 adantl x Top 𝑘Gen x Top
9 4 6 8 fmpt2d 𝑘Gen : Top Top
10 9 mptru 𝑘Gen : Top Top