Metamath Proof Explorer


Theorem kgenftop

Description: The compact generator generates a topology. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Assertion kgenftop J Top 𝑘Gen J Top

Proof

Step Hyp Ref Expression
1 toptopon2 J Top J TopOn J
2 kgentopon J TopOn J 𝑘Gen J TopOn J
3 1 2 sylbi J Top 𝑘Gen J TopOn J
4 topontop 𝑘Gen J TopOn J 𝑘Gen J Top
5 3 4 syl J Top 𝑘Gen J Top