Metamath Proof Explorer


Theorem kgenidm

Description: The compact generator is idempotent on compactly generated spaces. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Assertion kgenidm J ran 𝑘Gen 𝑘Gen J = J

Proof

Step Hyp Ref Expression
1 kgenf 𝑘Gen : Top Top
2 ffn 𝑘Gen : Top Top 𝑘Gen Fn Top
3 fvelrnb 𝑘Gen Fn Top J ran 𝑘Gen j Top 𝑘Gen j = J
4 1 2 3 mp2b J ran 𝑘Gen j Top 𝑘Gen j = J
5 toptopon2 j Top j TopOn j
6 kgentopon j TopOn j 𝑘Gen j TopOn j
7 5 6 sylbi j Top 𝑘Gen j TopOn j
8 kgentopon 𝑘Gen j TopOn j 𝑘Gen 𝑘Gen j TopOn j
9 7 8 syl j Top 𝑘Gen 𝑘Gen j TopOn j
10 toponss 𝑘Gen 𝑘Gen j TopOn j x 𝑘Gen 𝑘Gen j x j
11 9 10 sylan j Top x 𝑘Gen 𝑘Gen j x j
12 simplr j Top x 𝑘Gen 𝑘Gen j k 𝒫 j j 𝑡 k Comp x 𝑘Gen 𝑘Gen j
13 kgencmp2 j Top j 𝑡 k Comp 𝑘Gen j 𝑡 k Comp
14 13 biimpa j Top j 𝑡 k Comp 𝑘Gen j 𝑡 k Comp
15 14 ad2ant2rl j Top x 𝑘Gen 𝑘Gen j k 𝒫 j j 𝑡 k Comp 𝑘Gen j 𝑡 k Comp
16 kgeni x 𝑘Gen 𝑘Gen j 𝑘Gen j 𝑡 k Comp x k 𝑘Gen j 𝑡 k
17 12 15 16 syl2anc j Top x 𝑘Gen 𝑘Gen j k 𝒫 j j 𝑡 k Comp x k 𝑘Gen j 𝑡 k
18 kgencmp j Top j 𝑡 k Comp j 𝑡 k = 𝑘Gen j 𝑡 k
19 18 ad2ant2rl j Top x 𝑘Gen 𝑘Gen j k 𝒫 j j 𝑡 k Comp j 𝑡 k = 𝑘Gen j 𝑡 k
20 17 19 eleqtrrd j Top x 𝑘Gen 𝑘Gen j k 𝒫 j j 𝑡 k Comp x k j 𝑡 k
21 20 expr j Top x 𝑘Gen 𝑘Gen j k 𝒫 j j 𝑡 k Comp x k j 𝑡 k
22 21 ralrimiva j Top x 𝑘Gen 𝑘Gen j k 𝒫 j j 𝑡 k Comp x k j 𝑡 k
23 simpl j Top x 𝑘Gen 𝑘Gen j j Top
24 23 5 sylib j Top x 𝑘Gen 𝑘Gen j j TopOn j
25 elkgen j TopOn j x 𝑘Gen j x j k 𝒫 j j 𝑡 k Comp x k j 𝑡 k
26 24 25 syl j Top x 𝑘Gen 𝑘Gen j x 𝑘Gen j x j k 𝒫 j j 𝑡 k Comp x k j 𝑡 k
27 11 22 26 mpbir2and j Top x 𝑘Gen 𝑘Gen j x 𝑘Gen j
28 27 ex j Top x 𝑘Gen 𝑘Gen j x 𝑘Gen j
29 28 ssrdv j Top 𝑘Gen 𝑘Gen j 𝑘Gen j
30 fveq2 𝑘Gen j = J 𝑘Gen 𝑘Gen j = 𝑘Gen J
31 id 𝑘Gen j = J 𝑘Gen j = J
32 30 31 sseq12d 𝑘Gen j = J 𝑘Gen 𝑘Gen j 𝑘Gen j 𝑘Gen J J
33 29 32 syl5ibcom j Top 𝑘Gen j = J 𝑘Gen J J
34 33 rexlimiv j Top 𝑘Gen j = J 𝑘Gen J J
35 4 34 sylbi J ran 𝑘Gen 𝑘Gen J J
36 kgentop J ran 𝑘Gen J Top
37 kgenss J Top J 𝑘Gen J
38 36 37 syl J ran 𝑘Gen J 𝑘Gen J
39 35 38 eqssd J ran 𝑘Gen 𝑘Gen J = J