Metamath Proof Explorer


Theorem kgenss

Description: The compact generator generates a finer topology than the original. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Assertion kgenss J Top J 𝑘Gen J

Proof

Step Hyp Ref Expression
1 elssuni x J x J
2 1 a1i J Top x J x J
3 elrestr J Top k 𝒫 J x J x k J 𝑡 k
4 3 3expa J Top k 𝒫 J x J x k J 𝑡 k
5 4 an32s J Top x J k 𝒫 J x k J 𝑡 k
6 5 a1d J Top x J k 𝒫 J J 𝑡 k Comp x k J 𝑡 k
7 6 ralrimiva J Top x J k 𝒫 J J 𝑡 k Comp x k J 𝑡 k
8 7 ex J Top x J k 𝒫 J J 𝑡 k Comp x k J 𝑡 k
9 2 8 jcad J Top x J x J k 𝒫 J J 𝑡 k Comp x k J 𝑡 k
10 toptopon2 J Top J TopOn J
11 elkgen J TopOn J x 𝑘Gen J x J k 𝒫 J J 𝑡 k Comp x k J 𝑡 k
12 10 11 sylbi J Top x 𝑘Gen J x J k 𝒫 J J 𝑡 k Comp x k J 𝑡 k
13 9 12 sylibrd J Top x J x 𝑘Gen J
14 13 ssrdv J Top J 𝑘Gen J