Metamath Proof Explorer


Theorem kgenuni

Description: The base set of the compact generator is the same as the original topology. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Hypothesis kgenuni.1 X = J
Assertion kgenuni J Top X = 𝑘Gen J

Proof

Step Hyp Ref Expression
1 kgenuni.1 X = J
2 1 toptopon J Top J TopOn X
3 kgentopon J TopOn X 𝑘Gen J TopOn X
4 2 3 sylbi J Top 𝑘Gen J TopOn X
5 toponuni 𝑘Gen J TopOn X X = 𝑘Gen J
6 4 5 syl J Top X = 𝑘Gen J