Metamath Proof Explorer


Theorem kgenval

Description: Value of the compact generator. (The "k" in kGen comes from the name "k-space" for these spaces, after the German word kompakt.) (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Assertion kgenval J TopOn X 𝑘Gen J = x 𝒫 X | k 𝒫 X J 𝑡 k Comp x k J 𝑡 k

Proof

Step Hyp Ref Expression
1 df-kgen 𝑘Gen = j Top x 𝒫 j | k 𝒫 j j 𝑡 k Comp x k j 𝑡 k
2 unieq j = J j = J
3 toponuni J TopOn X X = J
4 3 eqcomd J TopOn X J = X
5 2 4 sylan9eqr J TopOn X j = J j = X
6 5 pweqd J TopOn X j = J 𝒫 j = 𝒫 X
7 oveq1 j = J j 𝑡 k = J 𝑡 k
8 7 eleq1d j = J j 𝑡 k Comp J 𝑡 k Comp
9 7 eleq2d j = J x k j 𝑡 k x k J 𝑡 k
10 8 9 imbi12d j = J j 𝑡 k Comp x k j 𝑡 k J 𝑡 k Comp x k J 𝑡 k
11 10 adantl J TopOn X j = J j 𝑡 k Comp x k j 𝑡 k J 𝑡 k Comp x k J 𝑡 k
12 6 11 raleqbidv J TopOn X j = J k 𝒫 j j 𝑡 k Comp x k j 𝑡 k k 𝒫 X J 𝑡 k Comp x k J 𝑡 k
13 6 12 rabeqbidv J TopOn X j = J x 𝒫 j | k 𝒫 j j 𝑡 k Comp x k j 𝑡 k = x 𝒫 X | k 𝒫 X J 𝑡 k Comp x k J 𝑡 k
14 topontop J TopOn X J Top
15 toponmax J TopOn X X J
16 pwexg X J 𝒫 X V
17 rabexg 𝒫 X V x 𝒫 X | k 𝒫 X J 𝑡 k Comp x k J 𝑡 k V
18 15 16 17 3syl J TopOn X x 𝒫 X | k 𝒫 X J 𝑡 k Comp x k J 𝑡 k V
19 1 13 14 18 fvmptd2 J TopOn X 𝑘Gen J = x 𝒫 X | k 𝒫 X J 𝑡 k Comp x k J 𝑡 k