Metamath Proof Explorer


Theorem kmlem10

Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004)

Ref Expression
Hypothesis kmlem9.1 A = u | t x u = t x t
Assertion kmlem10 h z h w h z w z w = y z h φ y z A φ

Proof

Step Hyp Ref Expression
1 kmlem9.1 A = u | t x u = t x t
2 1 kmlem9 z A w A z w z w =
3 vex x V
4 3 abrexex u | t x u = t x t V
5 1 4 eqeltri A V
6 raleq h = A w h z w z w = w A z w z w =
7 6 raleqbi1dv h = A z h w h z w z w = z A w A z w z w =
8 raleq h = A z h φ z A φ
9 8 exbidv h = A y z h φ y z A φ
10 7 9 imbi12d h = A z h w h z w z w = y z h φ z A w A z w z w = y z A φ
11 5 10 spcv h z h w h z w z w = y z h φ z A w A z w z w = y z A φ
12 2 11 mpi h z h w h z w z w = y z h φ y z A φ