Metamath Proof Explorer


Theorem kmlem11

Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 26-Mar-2004)

Ref Expression
Hypothesis kmlem9.1 A = u | t x u = t x t
Assertion kmlem11 z x z A = z x z

Proof

Step Hyp Ref Expression
1 kmlem9.1 A = u | t x u = t x t
2 1 unieqi A = u | t x u = t x t
3 vex t V
4 3 difexi t x t V
5 4 dfiun2 t x t x t = u | t x u = t x t
6 2 5 eqtr4i A = t x t x t
7 6 ineq2i z A = z t x t x t
8 iunin2 t x z t x t = z t x t x t
9 7 8 eqtr4i z A = t x z t x t
10 undif2 z x z = z x
11 snssi z x z x
12 ssequn1 z x z x = x
13 11 12 sylib z x z x = x
14 10 13 eqtr2id z x x = z x z
15 14 iuneq1d z x t x z t x t = t z x z z t x t
16 iunxun t z x z z t x t = t z z t x t t x z z t x t
17 vex z V
18 difeq1 t = z t x t = z x t
19 sneq t = z t = z
20 19 difeq2d t = z x t = x z
21 20 unieqd t = z x t = x z
22 21 difeq2d t = z z x t = z x z
23 18 22 eqtrd t = z t x t = z x z
24 23 ineq2d t = z z t x t = z z x z
25 17 24 iunxsn t z z t x t = z z x z
26 25 uneq1i t z z t x t t x z z t x t = z z x z t x z z t x t
27 16 26 eqtri t z x z z t x t = z z x z t x z z t x t
28 eldifsni t x z t z
29 incom z t x t = t x t z
30 kmlem4 z x t z t x t z =
31 29 30 eqtrid z x t z z t x t =
32 31 ex z x t z z t x t =
33 28 32 syl5 z x t x z z t x t =
34 33 ralrimiv z x t x z z t x t =
35 iuneq2 t x z z t x t = t x z z t x t = t x z
36 34 35 syl z x t x z z t x t = t x z
37 iun0 t x z =
38 36 37 eqtrdi z x t x z z t x t =
39 38 uneq2d z x z z x z t x z z t x t = z z x z
40 27 39 eqtrid z x t z x z z t x t = z z x z
41 15 40 eqtrd z x t x z t x t = z z x z
42 un0 z z x z = z z x z
43 indif z z x z = z x z
44 42 43 eqtri z z x z = z x z
45 41 44 eqtrdi z x t x z t x t = z x z
46 9 45 eqtrid z x z A = z x z