| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ineq2 |
|
| 2 |
1
|
eleq2d |
|
| 3 |
2
|
eubidv |
|
| 4 |
3
|
imbi2d |
|
| 5 |
4
|
ralbidv |
|
| 6 |
5
|
cbvexvw |
|
| 7 |
|
indi |
|
| 8 |
|
elssuni |
|
| 9 |
8
|
ssneld |
|
| 10 |
|
disjsn |
|
| 11 |
9 10
|
imbitrrdi |
|
| 12 |
11
|
impcom |
|
| 13 |
12
|
uneq2d |
|
| 14 |
|
un0 |
|
| 15 |
13 14
|
eqtrdi |
|
| 16 |
7 15
|
eqtr2id |
|
| 17 |
16
|
eleq2d |
|
| 18 |
17
|
eubidv |
|
| 19 |
18
|
imbi2d |
|
| 20 |
19
|
ralbidva |
|
| 21 |
|
vsnid |
|
| 22 |
21
|
olci |
|
| 23 |
|
elun |
|
| 24 |
22 23
|
mpbir |
|
| 25 |
|
elssuni |
|
| 26 |
25
|
sseld |
|
| 27 |
24 26
|
mpi |
|
| 28 |
27
|
con3i |
|
| 29 |
28
|
biantrurd |
|
| 30 |
20 29
|
bitrd |
|
| 31 |
|
vex |
|
| 32 |
|
vsnex |
|
| 33 |
31 32
|
unex |
|
| 34 |
|
eleq1 |
|
| 35 |
34
|
notbid |
|
| 36 |
|
ineq2 |
|
| 37 |
36
|
eleq2d |
|
| 38 |
37
|
eubidv |
|
| 39 |
38
|
imbi2d |
|
| 40 |
39
|
ralbidv |
|
| 41 |
35 40
|
anbi12d |
|
| 42 |
33 41
|
spcev |
|
| 43 |
30 42
|
biimtrdi |
|
| 44 |
|
vuniex |
|
| 45 |
|
eleq2 |
|
| 46 |
45
|
notbid |
|
| 47 |
46
|
exbidv |
|
| 48 |
|
nalset |
|
| 49 |
|
alexn |
|
| 50 |
48 49
|
mpbir |
|
| 51 |
50
|
spi |
|
| 52 |
44 47 51
|
vtocl |
|
| 53 |
43 52
|
exlimiiv |
|
| 54 |
53
|
exlimiv |
|
| 55 |
6 54
|
sylbi |
|
| 56 |
|
exsimpr |
|
| 57 |
55 56
|
impbii |
|