Metamath Proof Explorer


Theorem kmlem9

Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004)

Ref Expression
Hypothesis kmlem9.1 A = u | t x u = t x t
Assertion kmlem9 z A w A z w z w =

Proof

Step Hyp Ref Expression
1 kmlem9.1 A = u | t x u = t x t
2 vex z V
3 eqeq1 u = z u = t x t z = t x t
4 3 rexbidv u = z t x u = t x t t x z = t x t
5 2 4 1 elab2 z A t x z = t x t
6 vex w V
7 eqeq1 u = w u = t x t w = t x t
8 7 rexbidv u = w t x u = t x t t x w = t x t
9 6 8 1 elab2 w A t x w = t x t
10 difeq1 t = h t x t = h x t
11 sneq t = h t = h
12 11 difeq2d t = h x t = x h
13 12 unieqd t = h x t = x h
14 13 difeq2d t = h h x t = h x h
15 10 14 eqtrd t = h t x t = h x h
16 15 eqeq2d t = h w = t x t w = h x h
17 16 cbvrexvw t x w = t x t h x w = h x h
18 9 17 bitri w A h x w = h x h
19 reeanv t x h x z = t x t w = h x h t x z = t x t h x w = h x h
20 eqeq12 z = t x t w = h x h z = w t x t = h x h
21 15 20 syl5ibr z = t x t w = h x h t = h z = w
22 21 necon3d z = t x t w = h x h z w t h
23 kmlem5 h x t h t x t h x h =
24 ineq12 z = t x t w = h x h z w = t x t h x h
25 24 eqeq1d z = t x t w = h x h z w = t x t h x h =
26 23 25 syl5ibr z = t x t w = h x h h x t h z w =
27 26 expd z = t x t w = h x h h x t h z w =
28 22 27 syl5d z = t x t w = h x h h x z w z w =
29 28 com12 h x z = t x t w = h x h z w z w =
30 29 adantl t x h x z = t x t w = h x h z w z w =
31 30 rexlimivv t x h x z = t x t w = h x h z w z w =
32 19 31 sylbir t x z = t x t h x w = h x h z w z w =
33 5 18 32 syl2anb z A w A z w z w =
34 33 rgen2 z A w A z w z w =