Step |
Hyp |
Ref |
Expression |
1 |
|
knatar.1 |
|
2 |
|
pwidg |
|
3 |
2
|
3ad2ant1 |
|
4 |
|
simp2 |
|
5 |
|
fveq2 |
|
6 |
|
id |
|
7 |
5 6
|
sseq12d |
|
8 |
7
|
intminss |
|
9 |
3 4 8
|
syl2anc |
|
10 |
1 9
|
eqsstrid |
|
11 |
|
fveq2 |
|
12 |
11
|
sseq1d |
|
13 |
|
pweq |
|
14 |
|
fveq2 |
|
15 |
14
|
sseq2d |
|
16 |
13 15
|
raleqbidv |
|
17 |
|
simpl3 |
|
18 |
|
simprl |
|
19 |
16 17 18
|
rspcdva |
|
20 |
|
fveq2 |
|
21 |
|
id |
|
22 |
20 21
|
sseq12d |
|
23 |
22
|
intminss |
|
24 |
23
|
adantl |
|
25 |
1 24
|
eqsstrid |
|
26 |
|
vex |
|
27 |
26
|
elpw2 |
|
28 |
25 27
|
sylibr |
|
29 |
12 19 28
|
rspcdva |
|
30 |
|
simprr |
|
31 |
29 30
|
sstrd |
|
32 |
31
|
expr |
|
33 |
32
|
ralrimiva |
|
34 |
|
ssintrab |
|
35 |
33 34
|
sylibr |
|
36 |
22
|
cbvrabv |
|
37 |
36
|
inteqi |
|
38 |
1 37
|
eqtri |
|
39 |
35 38
|
sseqtrrdi |
|
40 |
11
|
sseq1d |
|
41 |
|
pweq |
|
42 |
|
fveq2 |
|
43 |
42
|
sseq2d |
|
44 |
41 43
|
raleqbidv |
|
45 |
|
simp3 |
|
46 |
44 45 3
|
rspcdva |
|
47 |
3 10
|
sselpwd |
|
48 |
40 46 47
|
rspcdva |
|
49 |
48 4
|
sstrd |
|
50 |
|
fvex |
|
51 |
50
|
elpw |
|
52 |
49 51
|
sylibr |
|
53 |
|
fveq2 |
|
54 |
53
|
sseq1d |
|
55 |
|
pweq |
|
56 |
|
fveq2 |
|
57 |
56
|
sseq2d |
|
58 |
55 57
|
raleqbidv |
|
59 |
58 45 47
|
rspcdva |
|
60 |
50
|
elpw |
|
61 |
39 60
|
sylibr |
|
62 |
54 59 61
|
rspcdva |
|
63 |
|
fveq2 |
|
64 |
|
id |
|
65 |
63 64
|
sseq12d |
|
66 |
65
|
intminss |
|
67 |
52 62 66
|
syl2anc |
|
68 |
38 67
|
eqsstrid |
|
69 |
39 68
|
eqssd |
|
70 |
10 69
|
jca |
|