Metamath Proof Explorer


Theorem knoppcnlem10

Description: Lemma for knoppcn . (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021) Avoid ax-mulf . (Revised by GG, 19-Apr-2025)

Ref Expression
Hypotheses knoppcnlem10.t T = x x + 1 2 x
knoppcnlem10.f F = y n 0 C n T 2 N n y
knoppcnlem10.n φ N
knoppcnlem10.1 φ C
knoppcnlem10.2 φ M 0
Assertion knoppcnlem10 φ z F z M topGen ran . Cn TopOpen fld

Proof

Step Hyp Ref Expression
1 knoppcnlem10.t T = x x + 1 2 x
2 knoppcnlem10.f F = y n 0 C n T 2 N n y
3 knoppcnlem10.n φ N
4 knoppcnlem10.1 φ C
5 knoppcnlem10.2 φ M 0
6 simpr φ z z
7 5 adantr φ z M 0
8 2 6 7 knoppcnlem1 φ z F z M = C M T 2 N M z
9 8 mpteq2dva φ z F z M = z C M T 2 N M z
10 retopon topGen ran . TopOn
11 10 a1i φ topGen ran . TopOn
12 eqid TopOpen fld = TopOpen fld
13 12 cnfldtopon TopOpen fld TopOn
14 13 a1i φ TopOpen fld TopOn
15 4 recnd φ C
16 15 5 expcld φ C M
17 11 14 16 cnmptc φ z C M topGen ran . Cn TopOpen fld
18 2cnd φ 2
19 3 nncnd φ N
20 18 19 mulcld φ 2 N
21 20 5 expcld φ 2 N M
22 11 14 21 cnmptc φ z 2 N M topGen ran . Cn TopOpen fld
23 12 tgioo2 topGen ran . = TopOpen fld 𝑡
24 23 oveq2i topGen ran . Cn topGen ran . = topGen ran . Cn TopOpen fld 𝑡
25 12 cnfldtop TopOpen fld Top
26 cnrest2r TopOpen fld Top topGen ran . Cn TopOpen fld 𝑡 topGen ran . Cn TopOpen fld
27 25 26 ax-mp topGen ran . Cn TopOpen fld 𝑡 topGen ran . Cn TopOpen fld
28 24 27 eqsstri topGen ran . Cn topGen ran . topGen ran . Cn TopOpen fld
29 11 cnmptid φ z z topGen ran . Cn topGen ran .
30 28 29 sselid φ z z topGen ran . Cn TopOpen fld
31 12 mpomulcn u , v u v TopOpen fld × t TopOpen fld Cn TopOpen fld
32 31 a1i φ u , v u v TopOpen fld × t TopOpen fld Cn TopOpen fld
33 oveq12 u = 2 N M v = z u v = 2 N M z
34 11 22 30 14 14 32 33 cnmpt12 φ z 2 N M z topGen ran . Cn TopOpen fld
35 2re 2
36 35 a1i φ 2
37 3 nnred φ N
38 36 37 remulcld φ 2 N
39 38 5 reexpcld φ 2 N M
40 39 adantr φ z 2 N M
41 40 6 remulcld φ z 2 N M z
42 41 fmpttd φ z 2 N M z :
43 42 frnd φ ran z 2 N M z
44 ax-resscn
45 44 a1i φ
46 cnrest2 TopOpen fld TopOn ran z 2 N M z z 2 N M z topGen ran . Cn TopOpen fld z 2 N M z topGen ran . Cn TopOpen fld 𝑡
47 13 43 45 46 mp3an2i φ z 2 N M z topGen ran . Cn TopOpen fld z 2 N M z topGen ran . Cn TopOpen fld 𝑡
48 34 47 mpbid φ z 2 N M z topGen ran . Cn TopOpen fld 𝑡
49 48 24 eleqtrrdi φ z 2 N M z topGen ran . Cn topGen ran .
50 ssid
51 cncfss cn cn
52 44 50 51 mp2an cn cn
53 1 dnicn T : cn
54 53 a1i φ T : cn
55 52 54 sselid φ T : cn
56 13 toponrestid TopOpen fld = TopOpen fld 𝑡
57 12 23 56 cncfcn cn = topGen ran . Cn TopOpen fld
58 44 50 57 mp2an cn = topGen ran . Cn TopOpen fld
59 55 58 eleqtrdi φ T topGen ran . Cn TopOpen fld
60 11 49 59 cnmpt11f φ z T 2 N M z topGen ran . Cn TopOpen fld
61 oveq12 u = C M v = T 2 N M z u v = C M T 2 N M z
62 11 17 60 14 14 32 61 cnmpt12 φ z C M T 2 N M z topGen ran . Cn TopOpen fld
63 9 62 eqeltrd φ z F z M topGen ran . Cn TopOpen fld