Metamath Proof Explorer


Theorem knoppndvlem22

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 19-Aug-2021)

Ref Expression
Hypotheses knoppndvlem22.t T = x x + 1 2 x
knoppndvlem22.f F = y n 0 C n T 2 N n y
knoppndvlem22.w W = w i 0 F w i
knoppndvlem22.c φ C 1 1
knoppndvlem22.d φ D +
knoppndvlem22.e φ E +
knoppndvlem22.h φ H
knoppndvlem22.n φ N
knoppndvlem22.1 φ 1 < N C
Assertion knoppndvlem22 φ a b a H H b b a < D a b E W b W a b a

Proof

Step Hyp Ref Expression
1 knoppndvlem22.t T = x x + 1 2 x
2 knoppndvlem22.f F = y n 0 C n T 2 N n y
3 knoppndvlem22.w W = w i 0 F w i
4 knoppndvlem22.c φ C 1 1
5 knoppndvlem22.d φ D +
6 knoppndvlem22.e φ E +
7 knoppndvlem22.h φ H
8 knoppndvlem22.n φ N
9 knoppndvlem22.1 φ 1 < N C
10 4 8 9 knoppndvlem20 φ 1 1 2 N C 1 +
11 4 8 5 6 10 9 knoppndvlem18 φ j 0 2 N j 2 < D E 2 N C j 1 1 2 N C 1
12 eqid 1 1 2 N C 1 = 1 1 2 N C 1
13 4 adantr φ j 0 2 N j 2 < D E 2 N C j 1 1 2 N C 1 C 1 1
14 5 adantr φ j 0 2 N j 2 < D E 2 N C j 1 1 2 N C 1 D +
15 6 adantr φ j 0 2 N j 2 < D E 2 N C j 1 1 2 N C 1 E +
16 7 adantr φ j 0 2 N j 2 < D E 2 N C j 1 1 2 N C 1 H
17 simprl φ j 0 2 N j 2 < D E 2 N C j 1 1 2 N C 1 j 0
18 8 adantr φ j 0 2 N j 2 < D E 2 N C j 1 1 2 N C 1 N
19 9 adantr φ j 0 2 N j 2 < D E 2 N C j 1 1 2 N C 1 1 < N C
20 simprrl φ j 0 2 N j 2 < D E 2 N C j 1 1 2 N C 1 2 N j 2 < D
21 simprrr φ j 0 2 N j 2 < D E 2 N C j 1 1 2 N C 1 E 2 N C j 1 1 2 N C 1
22 1 2 3 12 13 14 15 16 17 18 19 20 21 knoppndvlem21 φ j 0 2 N j 2 < D E 2 N C j 1 1 2 N C 1 a b a H H b b a < D a b E W b W a b a
23 11 22 rexlimddv φ a b a H H b b a < D a b E W b W a b a