Database
GRAPH THEORY
Eulerian paths and the Konigsberg Bridge problem
The Königsberg Bridge problem
konigsberg
Metamath Proof Explorer
Description: The Königsberg Bridge problem. If G is the Königsberg
graph, i.e. a graph on four vertices 0 , 1 , 2 , 3 , with edges
{ 0 , 1 } , { 0 , 2 } , { 0 , 3 } , { 1 , 2 } , { 1 , 2 } ,
{ 2 , 3 } , { 2 , 3 } , then vertices 0 , 1 , 3 each have degree
three, and 2 has degree five, so there are four vertices of odd
degree and thus by eulerpath the graph cannot have an Eulerian path.
It is sufficient to show that there are 3 vertices of odd degree, since
a graph having an Eulerian path can only have 0 or 2 vertices of odd
degree. This is Metamath 100 proof #54. (Contributed by Mario
Carneiro , 11-Mar-2015) (Revised by Mario Carneiro , 28-Feb-2016)
(Revised by AV , 9-Mar-2021)
Ref
Expression
Hypotheses
konigsberg.v
⊢ V = 0 … 3
konigsberg.e
⊢ E = 〈“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”〉
konigsberg.g
⊢ G = V E
Assertion
konigsberg
⊢ EulerPaths ⁡ G = ∅
Proof
Step
Hyp
Ref
Expression
1
konigsberg.v
⊢ V = 0 … 3
2
konigsberg.e
⊢ E = 〈“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”〉
3
konigsberg.g
⊢ G = V E
4
1 2 3
konigsberglem5
⊢ 2 < x ∈ V | ¬ 2 ∥ VtxDeg ⁡ G ⁡ x
5
elpri
⊢ x ∈ V | ¬ 2 ∥ VtxDeg ⁡ G ⁡ x ∈ 0 2 → x ∈ V | ¬ 2 ∥ VtxDeg ⁡ G ⁡ x = 0 ∨ x ∈ V | ¬ 2 ∥ VtxDeg ⁡ G ⁡ x = 2
6
2pos
⊢ 0 < 2
7
0re
⊢ 0 ∈ ℝ
8
2re
⊢ 2 ∈ ℝ
9
7 8
ltnsymi
⊢ 0 < 2 → ¬ 2 < 0
10
6 9
ax-mp
⊢ ¬ 2 < 0
11
breq2
⊢ x ∈ V | ¬ 2 ∥ VtxDeg ⁡ G ⁡ x = 0 → 2 < x ∈ V | ¬ 2 ∥ VtxDeg ⁡ G ⁡ x ↔ 2 < 0
12
10 11
mtbiri
⊢ x ∈ V | ¬ 2 ∥ VtxDeg ⁡ G ⁡ x = 0 → ¬ 2 < x ∈ V | ¬ 2 ∥ VtxDeg ⁡ G ⁡ x
13
8
ltnri
⊢ ¬ 2 < 2
14
breq2
⊢ x ∈ V | ¬ 2 ∥ VtxDeg ⁡ G ⁡ x = 2 → 2 < x ∈ V | ¬ 2 ∥ VtxDeg ⁡ G ⁡ x ↔ 2 < 2
15
13 14
mtbiri
⊢ x ∈ V | ¬ 2 ∥ VtxDeg ⁡ G ⁡ x = 2 → ¬ 2 < x ∈ V | ¬ 2 ∥ VtxDeg ⁡ G ⁡ x
16
12 15
jaoi
⊢ x ∈ V | ¬ 2 ∥ VtxDeg ⁡ G ⁡ x = 0 ∨ x ∈ V | ¬ 2 ∥ VtxDeg ⁡ G ⁡ x = 2 → ¬ 2 < x ∈ V | ¬ 2 ∥ VtxDeg ⁡ G ⁡ x
17
5 16
syl
⊢ x ∈ V | ¬ 2 ∥ VtxDeg ⁡ G ⁡ x ∈ 0 2 → ¬ 2 < x ∈ V | ¬ 2 ∥ VtxDeg ⁡ G ⁡ x
18
4 17
mt2
⊢ ¬ x ∈ V | ¬ 2 ∥ VtxDeg ⁡ G ⁡ x ∈ 0 2
19
1 2 3
konigsbergumgr
⊢ G ∈ UMGraph
20
umgrupgr
⊢ G ∈ UMGraph → G ∈ UPGraph
21
19 20
ax-mp
⊢ G ∈ UPGraph
22
3
fveq2i
⊢ Vtx ⁡ G = Vtx ⁡ V E
23
1
ovexi
⊢ V ∈ V
24
s7cli
⊢ 〈“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”〉 ∈ Word V
25
2 24
eqeltri
⊢ E ∈ Word V
26
opvtxfv
⊢ V ∈ V ∧ E ∈ Word V → Vtx ⁡ V E = V
27
23 25 26
mp2an
⊢ Vtx ⁡ V E = V
28
22 27
eqtr2i
⊢ V = Vtx ⁡ G
29
28
eulerpath
⊢ G ∈ UPGraph ∧ EulerPaths ⁡ G ≠ ∅ → x ∈ V | ¬ 2 ∥ VtxDeg ⁡ G ⁡ x ∈ 0 2
30
21 29
mpan
⊢ EulerPaths ⁡ G ≠ ∅ → x ∈ V | ¬ 2 ∥ VtxDeg ⁡ G ⁡ x ∈ 0 2
31
30
necon1bi
⊢ ¬ x ∈ V | ¬ 2 ∥ VtxDeg ⁡ G ⁡ x ∈ 0 2 → EulerPaths ⁡ G = ∅
32
18 31
ax-mp
⊢ EulerPaths ⁡ G = ∅