Metamath Proof Explorer


Theorem konigsberg

Description: The Königsberg Bridge problem. If G is the Königsberg graph, i.e. a graph on four vertices 0 , 1 , 2 , 3 , with edges { 0 , 1 } , { 0 , 2 } , { 0 , 3 } , { 1 , 2 } , { 1 , 2 } , { 2 , 3 } , { 2 , 3 } , then vertices 0 , 1 , 3 each have degree three, and 2 has degree five, so there are four vertices of odd degree and thus by eulerpath the graph cannot have an Eulerian path. It is sufficient to show that there are 3 vertices of odd degree, since a graph having an Eulerian path can only have 0 or 2 vertices of odd degree. This is Metamath 100 proof #54. (Contributed by Mario Carneiro, 11-Mar-2015) (Revised by Mario Carneiro, 28-Feb-2016) (Revised by AV, 9-Mar-2021)

Ref Expression
Hypotheses konigsberg.v V = 0 3
konigsberg.e E = ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩
konigsberg.g G = V E
Assertion konigsberg EulerPaths G =

Proof

Step Hyp Ref Expression
1 konigsberg.v V = 0 3
2 konigsberg.e E = ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩
3 konigsberg.g G = V E
4 1 2 3 konigsberglem5 2 < x V | ¬ 2 VtxDeg G x
5 elpri x V | ¬ 2 VtxDeg G x 0 2 x V | ¬ 2 VtxDeg G x = 0 x V | ¬ 2 VtxDeg G x = 2
6 2pos 0 < 2
7 0re 0
8 2re 2
9 7 8 ltnsymi 0 < 2 ¬ 2 < 0
10 6 9 ax-mp ¬ 2 < 0
11 breq2 x V | ¬ 2 VtxDeg G x = 0 2 < x V | ¬ 2 VtxDeg G x 2 < 0
12 10 11 mtbiri x V | ¬ 2 VtxDeg G x = 0 ¬ 2 < x V | ¬ 2 VtxDeg G x
13 8 ltnri ¬ 2 < 2
14 breq2 x V | ¬ 2 VtxDeg G x = 2 2 < x V | ¬ 2 VtxDeg G x 2 < 2
15 13 14 mtbiri x V | ¬ 2 VtxDeg G x = 2 ¬ 2 < x V | ¬ 2 VtxDeg G x
16 12 15 jaoi x V | ¬ 2 VtxDeg G x = 0 x V | ¬ 2 VtxDeg G x = 2 ¬ 2 < x V | ¬ 2 VtxDeg G x
17 5 16 syl x V | ¬ 2 VtxDeg G x 0 2 ¬ 2 < x V | ¬ 2 VtxDeg G x
18 4 17 mt2 ¬ x V | ¬ 2 VtxDeg G x 0 2
19 1 2 3 konigsbergumgr G UMGraph
20 umgrupgr G UMGraph G UPGraph
21 19 20 ax-mp G UPGraph
22 3 fveq2i Vtx G = Vtx V E
23 1 ovexi V V
24 s7cli ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩ Word V
25 2 24 eqeltri E Word V
26 opvtxfv V V E Word V Vtx V E = V
27 23 25 26 mp2an Vtx V E = V
28 22 27 eqtr2i V = Vtx G
29 28 eulerpath G UPGraph EulerPaths G x V | ¬ 2 VtxDeg G x 0 2
30 21 29 mpan EulerPaths G x V | ¬ 2 VtxDeg G x 0 2
31 30 necon1bi ¬ x V | ¬ 2 VtxDeg G x 0 2 EulerPaths G =
32 18 31 ax-mp EulerPaths G =