Database GRAPH THEORY Eulerian paths and the Konigsberg Bridge problem The Königsberg Bridge problem konigsberg  
				
		 
		
			
		 
		Description:   The Königsberg Bridge problem.  If G  is the Königsberg
       graph, i.e. a graph on four vertices 0 , 1 , 2 , 3  , with edges
       { 0 , 1 } , { 0 , 2 } , { 0 , 3 } , { 1 , 2 } , { 1 , 2 } , 
       { 2 , 3 } , { 2 , 3 }  , then vertices 0 , 1 , 3  each have degree
       three, and 2  has degree five, so there are four vertices of odd
       degree and thus by eulerpath  the graph cannot have an Eulerian path.
       It is sufficient to show that there are 3 vertices of odd degree, since
       a graph having an Eulerian path can only have 0 or 2 vertices of odd
       degree.  This is Metamath 100 proof #54.  (Contributed by Mario
       Carneiro , 11-Mar-2015)   (Revised by Mario Carneiro , 28-Feb-2016) 
       (Revised by AV , 9-Mar-2021) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						konigsberg.v   ⊢   V  =   0   …   3       
					 
					
						konigsberg.e   ⊢   E  =   〈“    0    1      0    2      0    3      1    2      1    2      2    3      2    3     ”〉         
					 
					
						konigsberg.g   ⊢   G  =   V  E         
					 
				
					Assertion 
					konigsberg   ⊢     EulerPaths   ⁡  G   =  ∅       
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							konigsberg.v  ⊢   V  =   0   …   3       
						
							2 
								
							 
							konigsberg.e  ⊢   E  =   〈“    0    1      0    2      0    3      1    2      1    2      2    3      2    3     ”〉         
						
							3 
								
							 
							konigsberg.g  ⊢   G  =   V  E         
						
							4 
								1  2  3 
							 
							konigsberglem5  ⊢    2   <   x  ∈  V  |   ¬   2   ∥     VtxDeg   ⁡  G   ⁡  x          
						
							5 
								
							 
							elpri   ⊢    x  ∈  V  |   ¬   2   ∥     VtxDeg   ⁡  G   ⁡  x     ∈    0    2       →     x  ∈  V  |   ¬   2   ∥     VtxDeg   ⁡  G   ⁡  x     =   0     ∨    x  ∈  V  |   ¬   2   ∥     VtxDeg   ⁡  G   ⁡  x     =   2           
						
							6 
								
							 
							2pos  ⊢    0   <   2        
						
							7 
								
							 
							0re  ⊢    0   ∈   ℝ        
						
							8 
								
							 
							2re  ⊢    2   ∈   ℝ        
						
							9 
								7  8 
							 
							ltnsymi   ⊢    0   <   2     →   ¬    2   <   0            
						
							10 
								6  9 
							 
							ax-mp  ⊢   ¬    2   <   0          
						
							11 
								
							 
							breq2   ⊢    x  ∈  V  |   ¬   2   ∥     VtxDeg   ⁡  G   ⁡  x     =   0     →     2   <   x  ∈  V  |   ¬   2   ∥     VtxDeg   ⁡  G   ⁡  x       ↔    2   <   0           
						
							12 
								10  11 
							 
							mtbiri   ⊢    x  ∈  V  |   ¬   2   ∥     VtxDeg   ⁡  G   ⁡  x     =   0     →   ¬    2   <   x  ∈  V  |   ¬   2   ∥     VtxDeg   ⁡  G   ⁡  x              
						
							13 
								8 
							 
							ltnri  ⊢   ¬    2   <   2          
						
							14 
								
							 
							breq2   ⊢    x  ∈  V  |   ¬   2   ∥     VtxDeg   ⁡  G   ⁡  x     =   2     →     2   <   x  ∈  V  |   ¬   2   ∥     VtxDeg   ⁡  G   ⁡  x       ↔    2   <   2           
						
							15 
								13  14 
							 
							mtbiri   ⊢    x  ∈  V  |   ¬   2   ∥     VtxDeg   ⁡  G   ⁡  x     =   2     →   ¬    2   <   x  ∈  V  |   ¬   2   ∥     VtxDeg   ⁡  G   ⁡  x              
						
							16 
								12  15 
							 
							jaoi   ⊢     x  ∈  V  |   ¬   2   ∥     VtxDeg   ⁡  G   ⁡  x     =   0     ∨    x  ∈  V  |   ¬   2   ∥     VtxDeg   ⁡  G   ⁡  x     =   2      →   ¬    2   <   x  ∈  V  |   ¬   2   ∥     VtxDeg   ⁡  G   ⁡  x              
						
							17 
								5  16 
							 
							syl   ⊢    x  ∈  V  |   ¬   2   ∥     VtxDeg   ⁡  G   ⁡  x     ∈    0    2       →   ¬    2   <   x  ∈  V  |   ¬   2   ∥     VtxDeg   ⁡  G   ⁡  x              
						
							18 
								4  17 
							 
							mt2  ⊢   ¬    x  ∈  V  |   ¬   2   ∥     VtxDeg   ⁡  G   ⁡  x     ∈    0    2            
						
							19 
								1  2  3 
							 
							konigsbergumgr  ⊢   G  ∈  UMGraph       
						
							20 
								
							 
							umgrupgr   ⊢   G  ∈  UMGraph    →   G  ∈   UPGraph          
						
							21 
								19  20 
							 
							ax-mp  ⊢   G  ∈   UPGraph        
						
							22 
								3 
							 
							fveq2i  ⊢     Vtx   ⁡  G   =    Vtx   ⁡   V  E          
						
							23 
								1 
							 
							ovexi  ⊢   V  ∈  V       
						
							24 
								
							 
							s7cli  ⊢    〈“    0    1      0    2      0    3      1    2      1    2      2    3      2    3     ”〉    ∈   Word  V         
						
							25 
								2  24 
							 
							eqeltri  ⊢   E  ∈   Word  V         
						
							26 
								
							 
							opvtxfv   ⊢    V  ∈  V    ∧   E  ∈   Word  V       →     Vtx   ⁡   V  E     =  V         
						
							27 
								23  25  26 
							 
							mp2an  ⊢     Vtx   ⁡   V  E     =  V       
						
							28 
								22  27 
							 
							eqtr2i  ⊢   V  =    Vtx   ⁡  G        
						
							29 
								28 
							 
							eulerpath   ⊢    G  ∈   UPGraph     ∧     EulerPaths   ⁡  G   ≠  ∅     →    x  ∈  V  |   ¬   2   ∥     VtxDeg   ⁡  G   ⁡  x     ∈    0    2            
						
							30 
								21  29 
							 
							mpan   ⊢     EulerPaths   ⁡  G   ≠  ∅    →    x  ∈  V  |   ¬   2   ∥     VtxDeg   ⁡  G   ⁡  x     ∈    0    2            
						
							31 
								30 
							 
							necon1bi   ⊢   ¬    x  ∈  V  |   ¬   2   ∥     VtxDeg   ⁡  G   ⁡  x     ∈    0    2         →     EulerPaths   ⁡  G   =  ∅         
						
							32 
								18  31 
							 
							ax-mp  ⊢     EulerPaths   ⁡  G   =  ∅