Metamath Proof Explorer


Theorem konigsbergiedg

Description: The indexed edges of the Königsberg graph G . (Contributed by AV, 28-Feb-2021)

Ref Expression
Hypotheses konigsberg.v V = 0 3
konigsberg.e E = ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩
konigsberg.g G = V E
Assertion konigsbergiedg iEdg G = ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩

Proof

Step Hyp Ref Expression
1 konigsberg.v V = 0 3
2 konigsberg.e E = ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩
3 konigsberg.g G = V E
4 1 2 opeq12i V E = 0 3 ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩
5 3 4 eqtri G = 0 3 ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩
6 5 fveq2i iEdg G = iEdg 0 3 ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩
7 ovex 0 3 V
8 s7cli ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩ Word V
9 opiedgfv 0 3 V ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩ Word V iEdg 0 3 ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩ = ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩
10 7 8 9 mp2an iEdg 0 3 ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩ = ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩
11 6 10 eqtri iEdg G = ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩