Database
GRAPH THEORY
Eulerian paths and the Konigsberg Bridge problem
The Königsberg Bridge problem
konigsbergiedg
Next ⟩
konigsbergiedgw
Metamath Proof Explorer
Ascii
Unicode
Theorem
konigsbergiedg
Description:
The indexed edges of the Königsberg graph
G
.
(Contributed by
AV
, 28-Feb-2021)
Ref
Expression
Hypotheses
konigsberg.v
⊢
V
=
0
…
3
konigsberg.e
⊢
E
=
〈“
0
1
0
2
0
3
1
2
1
2
2
3
2
3
”〉
konigsberg.g
⊢
G
=
V
E
Assertion
konigsbergiedg
⊢
iEdg
⁡
G
=
〈“
0
1
0
2
0
3
1
2
1
2
2
3
2
3
”〉
Proof
Step
Hyp
Ref
Expression
1
konigsberg.v
⊢
V
=
0
…
3
2
konigsberg.e
⊢
E
=
〈“
0
1
0
2
0
3
1
2
1
2
2
3
2
3
”〉
3
konigsberg.g
⊢
G
=
V
E
4
1
2
opeq12i
⊢
V
E
=
0
…
3
〈“
0
1
0
2
0
3
1
2
1
2
2
3
2
3
”〉
5
3
4
eqtri
⊢
G
=
0
…
3
〈“
0
1
0
2
0
3
1
2
1
2
2
3
2
3
”〉
6
5
fveq2i
⊢
iEdg
⁡
G
=
iEdg
⁡
0
…
3
〈“
0
1
0
2
0
3
1
2
1
2
2
3
2
3
”〉
7
ovex
⊢
0
…
3
∈
V
8
s7cli
⊢
〈“
0
1
0
2
0
3
1
2
1
2
2
3
2
3
”〉
∈
Word
V
9
opiedgfv
⊢
0
…
3
∈
V
∧
〈“
0
1
0
2
0
3
1
2
1
2
2
3
2
3
”〉
∈
Word
V
→
iEdg
⁡
0
…
3
〈“
0
1
0
2
0
3
1
2
1
2
2
3
2
3
”〉
=
〈“
0
1
0
2
0
3
1
2
1
2
2
3
2
3
”〉
10
7
8
9
mp2an
⊢
iEdg
⁡
0
…
3
〈“
0
1
0
2
0
3
1
2
1
2
2
3
2
3
”〉
=
〈“
0
1
0
2
0
3
1
2
1
2
2
3
2
3
”〉
11
6
10
eqtri
⊢
iEdg
⁡
G
=
〈“
0
1
0
2
0
3
1
2
1
2
2
3
2
3
”〉