Metamath Proof Explorer


Theorem konigsbergiedgw

Description: The indexed edges of the Königsberg graph G is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021)

Ref Expression
Hypotheses konigsberg.v V = 0 3
konigsberg.e E = ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩
konigsberg.g G = V E
Assertion konigsbergiedgw E Word x 𝒫 V | x = 2

Proof

Step Hyp Ref Expression
1 konigsberg.v V = 0 3
2 konigsberg.e E = ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩
3 konigsberg.g G = V E
4 3nn0 3 0
5 0elfz 3 0 0 0 3
6 4 5 ax-mp 0 0 3
7 1nn0 1 0
8 1le3 1 3
9 elfz2nn0 1 0 3 1 0 3 0 1 3
10 7 4 8 9 mpbir3an 1 0 3
11 0ne1 0 1
12 6 10 11 umgrbi 0 1 x 𝒫 0 3 | x = 2
13 12 a1i 0 1 x 𝒫 0 3 | x = 2
14 2nn0 2 0
15 2re 2
16 3re 3
17 2lt3 2 < 3
18 15 16 17 ltleii 2 3
19 elfz2nn0 2 0 3 2 0 3 0 2 3
20 14 4 18 19 mpbir3an 2 0 3
21 0ne2 0 2
22 6 20 21 umgrbi 0 2 x 𝒫 0 3 | x = 2
23 22 a1i 0 2 x 𝒫 0 3 | x = 2
24 nn0fz0 3 0 3 0 3
25 4 24 mpbi 3 0 3
26 3ne0 3 0
27 26 necomi 0 3
28 6 25 27 umgrbi 0 3 x 𝒫 0 3 | x = 2
29 28 a1i 0 3 x 𝒫 0 3 | x = 2
30 1ne2 1 2
31 10 20 30 umgrbi 1 2 x 𝒫 0 3 | x = 2
32 31 a1i 1 2 x 𝒫 0 3 | x = 2
33 15 17 ltneii 2 3
34 20 25 33 umgrbi 2 3 x 𝒫 0 3 | x = 2
35 34 a1i 2 3 x 𝒫 0 3 | x = 2
36 13 23 29 32 32 35 35 s7cld ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩ Word x 𝒫 0 3 | x = 2
37 36 mptru ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩ Word x 𝒫 0 3 | x = 2
38 1 pweqi 𝒫 V = 𝒫 0 3
39 38 rabeqi x 𝒫 V | x = 2 = x 𝒫 0 3 | x = 2
40 39 wrdeqi Word x 𝒫 V | x = 2 = Word x 𝒫 0 3 | x = 2
41 37 2 40 3eltr4i E Word x 𝒫 V | x = 2