Metamath Proof Explorer


Theorem konigsbergssiedgwpr

Description: Each subset of the indexed edges of the Königsberg graph G is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021)

Ref Expression
Hypotheses konigsberg.v V = 0 3
konigsberg.e E = ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩
konigsberg.g G = V E
Assertion konigsbergssiedgwpr A Word V B Word V E = A ++ B A Word x 𝒫 V | x = 2

Proof

Step Hyp Ref Expression
1 konigsberg.v V = 0 3
2 konigsberg.e E = ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩
3 konigsberg.g G = V E
4 1 2 3 konigsbergiedgw E Word x 𝒫 V | x = 2
5 4 jctr E = A ++ B E = A ++ B E Word x 𝒫 V | x = 2
6 ccatrcl1 A Word V B Word V E = A ++ B E Word x 𝒫 V | x = 2 A Word x 𝒫 V | x = 2
7 5 6 syl3an3 A Word V B Word V E = A ++ B A Word x 𝒫 V | x = 2