Metamath Proof Explorer


Theorem konigsbergumgr

Description: The Königsberg graph G is a multigraph. (Contributed by AV, 28-Feb-2021) (Revised by AV, 9-Mar-2021)

Ref Expression
Hypotheses konigsberg.v V = 0 3
konigsberg.e E = ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩
konigsberg.g G = V E
Assertion konigsbergumgr G UMGraph

Proof

Step Hyp Ref Expression
1 konigsberg.v V = 0 3
2 konigsberg.e E = ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩
3 konigsberg.g G = V E
4 1 2 3 konigsbergiedgw E Word x 𝒫 V | x = 2
5 opex V E V
6 3 5 eqeltri G V
7 s7cli ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩ Word V
8 2 7 eqeltri E Word V
9 1 2 3 konigsbergvtx Vtx G = 0 3
10 1 9 eqtr4i V = Vtx G
11 1 2 3 konigsbergiedg iEdg G = ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩
12 2 11 eqtr4i E = iEdg G
13 10 12 wrdumgr G V E Word V G UMGraph E Word x 𝒫 V | x = 2
14 6 8 13 mp2an G UMGraph E Word x 𝒫 V | x = 2
15 4 14 mpbir G UMGraph