Metamath Proof Explorer


Theorem konigthlem

Description: Lemma for konigth . (Contributed by Mario Carneiro, 22-Feb-2013)

Ref Expression
Hypotheses konigth.1 A V
konigth.2 S = i A M i
konigth.3 P = i A N i
konigth.4 D = i A a M i f a i
konigth.5 E = i A e i
Assertion konigthlem i A M i N i S P

Proof

Step Hyp Ref Expression
1 konigth.1 A V
2 konigth.2 S = i A M i
3 konigth.3 P = i A N i
4 konigth.4 D = i A a M i f a i
5 konigth.5 E = i A e i
6 fvex M i V
7 fvex f a i V
8 eqid a M i f a i = a M i f a i
9 7 8 fnmpti a M i f a i Fn M i
10 6 mptex a M i f a i V
11 4 fvmpt2 i A a M i f a i V D i = a M i f a i
12 10 11 mpan2 i A D i = a M i f a i
13 12 fneq1d i A D i Fn M i a M i f a i Fn M i
14 9 13 mpbiri i A D i Fn M i
15 fnrndomg M i V D i Fn M i ran D i M i
16 6 14 15 mpsyl i A ran D i M i
17 domsdomtr ran D i M i M i N i ran D i N i
18 16 17 sylan i A M i N i ran D i N i
19 sdomdif ran D i N i N i ran D i
20 18 19 syl i A M i N i N i ran D i
21 20 ralimiaa i A M i N i i A N i ran D i
22 fvex N i V
23 22 difexi N i ran D i V
24 1 23 ac6c5 i A N i ran D i e i A e i N i ran D i
25 equid f = f
26 eldifi e i N i ran D i e i N i
27 fvex e i V
28 5 fvmpt2 i A e i V E i = e i
29 27 28 mpan2 i A E i = e i
30 29 eleq1d i A E i N i e i N i
31 26 30 syl5ibr i A e i N i ran D i E i N i
32 31 ralimia i A e i N i ran D i i A E i N i
33 27 5 fnmpti E Fn A
34 32 33 jctil i A e i N i ran D i E Fn A i A E i N i
35 1 mptex i A e i V
36 5 35 eqeltri E V
37 36 elixp E i A N i E Fn A i A E i N i
38 34 37 sylibr i A e i N i ran D i E i A N i
39 38 3 eleqtrrdi i A e i N i ran D i E P
40 foelrn f : S onto P E P a S E = f a
41 40 expcom E P f : S onto P a S E = f a
42 2 eleq2i a S a i A M i
43 eliun a i A M i i A a M i
44 42 43 bitri a S i A a M i
45 nfra1 i i A e i N i ran D i
46 nfv i E = f a
47 45 46 nfan i i A e i N i ran D i E = f a
48 nfv i ¬ f = f
49 29 ad2antrl E = f a i A a M i E i = e i
50 fveq1 E = f a E i = f a i
51 12 fveq1d i A D i a = a M i f a i a
52 8 fvmpt2 a M i f a i V a M i f a i a = f a i
53 7 52 mpan2 a M i a M i f a i a = f a i
54 51 53 sylan9eq i A a M i D i a = f a i
55 54 eqcomd i A a M i f a i = D i a
56 50 55 sylan9eq E = f a i A a M i E i = D i a
57 49 56 eqtr3d E = f a i A a M i e i = D i a
58 fnfvelrn D i Fn M i a M i D i a ran D i
59 14 58 sylan i A a M i D i a ran D i
60 59 adantl E = f a i A a M i D i a ran D i
61 57 60 eqeltrd E = f a i A a M i e i ran D i
62 61 3adant1 i A e i N i ran D i E = f a i A a M i e i ran D i
63 simp1 i A e i N i ran D i E = f a i A a M i i A e i N i ran D i
64 simp3l i A e i N i ran D i E = f a i A a M i i A
65 rsp i A e i N i ran D i i A e i N i ran D i
66 eldifn e i N i ran D i ¬ e i ran D i
67 65 66 syl6 i A e i N i ran D i i A ¬ e i ran D i
68 63 64 67 sylc i A e i N i ran D i E = f a i A a M i ¬ e i ran D i
69 62 68 pm2.21dd i A e i N i ran D i E = f a i A a M i ¬ f = f
70 69 3expia i A e i N i ran D i E = f a i A a M i ¬ f = f
71 70 expd i A e i N i ran D i E = f a i A a M i ¬ f = f
72 47 48 71 rexlimd i A e i N i ran D i E = f a i A a M i ¬ f = f
73 44 72 syl5bi i A e i N i ran D i E = f a a S ¬ f = f
74 73 ex i A e i N i ran D i E = f a a S ¬ f = f
75 74 com23 i A e i N i ran D i a S E = f a ¬ f = f
76 75 rexlimdv i A e i N i ran D i a S E = f a ¬ f = f
77 41 76 syl9r i A e i N i ran D i E P f : S onto P ¬ f = f
78 39 77 mpd i A e i N i ran D i f : S onto P ¬ f = f
79 25 78 mt2i i A e i N i ran D i ¬ f : S onto P
80 79 exlimiv e i A e i N i ran D i ¬ f : S onto P
81 21 24 80 3syl i A M i N i ¬ f : S onto P
82 81 nexdv i A M i N i ¬ f f : S onto P
83 6 0dom M i
84 domsdomtr M i M i N i N i
85 83 84 mpan M i N i N i
86 22 0sdom N i N i
87 85 86 sylib M i N i N i
88 87 ralimi i A M i N i i A N i
89 3 neeq1i P i A N i
90 22 rgenw i A N i V
91 ixpexg i A N i V i A N i V
92 90 91 ax-mp i A N i V
93 3 92 eqeltri P V
94 93 0sdom P P
95 1 22 ac9 i A N i i A N i
96 89 94 95 3bitr4i P i A N i
97 88 96 sylibr i A M i N i P
98 1 6 iunex i A M i V
99 2 98 eqeltri S V
100 domtri P V S V P S ¬ S P
101 93 99 100 mp2an P S ¬ S P
102 101 biimpri ¬ S P P S
103 fodomr P P S f f : S onto P
104 97 102 103 syl2an i A M i N i ¬ S P f f : S onto P
105 82 104 mtand i A M i N i ¬ ¬ S P
106 105 notnotrd i A M i N i S P