Metamath Proof Explorer


Theorem kqcld

Description: The topological indistinguishability map is a closed map. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2 F = x X y J | x y
Assertion kqcld J TopOn X U Clsd J F U Clsd KQ J

Proof

Step Hyp Ref Expression
1 kqval.2 F = x X y J | x y
2 imassrn F U ran F
3 2 a1i J TopOn X U Clsd J F U ran F
4 1 kqcldsat J TopOn X U Clsd J F -1 F U = U
5 simpr J TopOn X U Clsd J U Clsd J
6 4 5 eqeltrd J TopOn X U Clsd J F -1 F U Clsd J
7 1 kqffn J TopOn X F Fn X
8 dffn4 F Fn X F : X onto ran F
9 7 8 sylib J TopOn X F : X onto ran F
10 qtopcld J TopOn X F : X onto ran F F U Clsd J qTop F F U ran F F -1 F U Clsd J
11 9 10 mpdan J TopOn X F U Clsd J qTop F F U ran F F -1 F U Clsd J
12 11 adantr J TopOn X U Clsd J F U Clsd J qTop F F U ran F F -1 F U Clsd J
13 3 6 12 mpbir2and J TopOn X U Clsd J F U Clsd J qTop F
14 1 kqval J TopOn X KQ J = J qTop F
15 14 adantr J TopOn X U Clsd J KQ J = J qTop F
16 15 fveq2d J TopOn X U Clsd J Clsd KQ J = Clsd J qTop F
17 13 16 eleqtrrd J TopOn X U Clsd J F U Clsd KQ J