Metamath Proof Explorer


Theorem kqfeq

Description: Two points in the Kolmogorov quotient are equal iff the original points are topologically indistinguishable. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2 F = x X y J | x y
Assertion kqfeq J V A X B X F A = F B y J A y B y

Proof

Step Hyp Ref Expression
1 kqval.2 F = x X y J | x y
2 1 kqfval J V A X F A = y J | A y
3 2 3adant3 J V A X B X F A = y J | A y
4 1 kqfval J V B X F B = y J | B y
5 4 3adant2 J V A X B X F B = y J | B y
6 3 5 eqeq12d J V A X B X F A = F B y J | A y = y J | B y
7 rabbi y J A y B y y J | A y = y J | B y
8 6 7 bitr4di J V A X B X F A = F B y J A y B y