Metamath Proof Explorer


Theorem kqfval

Description: Value of the function appearing in df-kq . (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2 F = x X y J | x y
Assertion kqfval J V A X F A = y J | A y

Proof

Step Hyp Ref Expression
1 kqval.2 F = x X y J | x y
2 id A X A X
3 rabexg J V y J | A y V
4 eleq1 x = A x y A y
5 4 rabbidv x = A y J | x y = y J | A y
6 5 1 fvmptg A X y J | A y V F A = y J | A y
7 2 3 6 syl2anr J V A X F A = y J | A y