Step |
Hyp |
Ref |
Expression |
1 |
|
kqval.2 |
|
2 |
1
|
kqffn |
|
3 |
2
|
3ad2ant1 |
|
4 |
|
toponss |
|
5 |
4
|
3adant3 |
|
6 |
|
fnfvima |
|
7 |
6
|
3expia |
|
8 |
3 5 7
|
syl2anc |
|
9 |
|
fnfun |
|
10 |
|
fvelima |
|
11 |
10
|
ex |
|
12 |
3 9 11
|
3syl |
|
13 |
|
simpl1 |
|
14 |
5
|
sselda |
|
15 |
|
simpl3 |
|
16 |
1
|
kqfeq |
|
17 |
13 14 15 16
|
syl3anc |
|
18 |
|
eleq2 |
|
19 |
|
eleq2 |
|
20 |
18 19
|
bibi12d |
|
21 |
20
|
cbvralvw |
|
22 |
17 21
|
bitrdi |
|
23 |
|
simpl2 |
|
24 |
|
eleq2 |
|
25 |
|
eleq2 |
|
26 |
24 25
|
bibi12d |
|
27 |
26
|
rspcv |
|
28 |
23 27
|
syl |
|
29 |
22 28
|
sylbid |
|
30 |
|
simpr |
|
31 |
|
biimp |
|
32 |
29 30 31
|
syl6ci |
|
33 |
32
|
rexlimdva |
|
34 |
12 33
|
syld |
|
35 |
8 34
|
impbid |
|