| Step |
Hyp |
Ref |
Expression |
| 1 |
|
kqval.2 |
|
| 2 |
1
|
kqffn |
|
| 3 |
2
|
3ad2ant1 |
|
| 4 |
|
toponss |
|
| 5 |
4
|
3adant3 |
|
| 6 |
|
fnfvima |
|
| 7 |
6
|
3expia |
|
| 8 |
3 5 7
|
syl2anc |
|
| 9 |
|
fnfun |
|
| 10 |
|
fvelima |
|
| 11 |
10
|
ex |
|
| 12 |
3 9 11
|
3syl |
|
| 13 |
|
simpl1 |
|
| 14 |
5
|
sselda |
|
| 15 |
|
simpl3 |
|
| 16 |
1
|
kqfeq |
|
| 17 |
13 14 15 16
|
syl3anc |
|
| 18 |
|
eleq2 |
|
| 19 |
|
eleq2 |
|
| 20 |
18 19
|
bibi12d |
|
| 21 |
20
|
cbvralvw |
|
| 22 |
17 21
|
bitrdi |
|
| 23 |
|
simpl2 |
|
| 24 |
|
eleq2 |
|
| 25 |
|
eleq2 |
|
| 26 |
24 25
|
bibi12d |
|
| 27 |
26
|
rspcv |
|
| 28 |
23 27
|
syl |
|
| 29 |
22 28
|
sylbid |
|
| 30 |
|
simpr |
|
| 31 |
|
biimp |
|
| 32 |
29 30 31
|
syl6ci |
|
| 33 |
32
|
rexlimdva |
|
| 34 |
12 33
|
syld |
|
| 35 |
8 34
|
impbid |
|