Metamath Proof Explorer


Theorem kqnrmlem1

Description: A Kolmogorov quotient of a normal space is normal. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2 F = x X y J | x y
Assertion kqnrmlem1 J TopOn X J Nrm KQ J Nrm

Proof

Step Hyp Ref Expression
1 kqval.2 F = x X y J | x y
2 1 kqtopon J TopOn X KQ J TopOn ran F
3 2 adantr J TopOn X J Nrm KQ J TopOn ran F
4 topontop KQ J TopOn ran F KQ J Top
5 3 4 syl J TopOn X J Nrm KQ J Top
6 simplr J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z J Nrm
7 1 kqid J TopOn X F J Cn KQ J
8 7 ad2antrr J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z F J Cn KQ J
9 simprl J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z z KQ J
10 cnima F J Cn KQ J z KQ J F -1 z J
11 8 9 10 syl2anc J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z F -1 z J
12 simprr J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z w Clsd KQ J 𝒫 z
13 12 elin1d J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z w Clsd KQ J
14 cnclima F J Cn KQ J w Clsd KQ J F -1 w Clsd J
15 8 13 14 syl2anc J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z F -1 w Clsd J
16 12 elin2d J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z w 𝒫 z
17 elpwi w 𝒫 z w z
18 imass2 w z F -1 w F -1 z
19 16 17 18 3syl J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z F -1 w F -1 z
20 nrmsep3 J Nrm F -1 z J F -1 w Clsd J F -1 w F -1 z u J F -1 w u cls J u F -1 z
21 6 11 15 19 20 syl13anc J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z u J F -1 w u cls J u F -1 z
22 simplll J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z u J F -1 w u cls J u F -1 z J TopOn X
23 simprl J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z u J F -1 w u cls J u F -1 z u J
24 1 kqopn J TopOn X u J F u KQ J
25 22 23 24 syl2anc J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z u J F -1 w u cls J u F -1 z F u KQ J
26 simprrl J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z u J F -1 w u cls J u F -1 z F -1 w u
27 1 kqffn J TopOn X F Fn X
28 fnfun F Fn X Fun F
29 22 27 28 3syl J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z u J F -1 w u cls J u F -1 z Fun F
30 13 adantr J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z u J F -1 w u cls J u F -1 z w Clsd KQ J
31 eqid KQ J = KQ J
32 31 cldss w Clsd KQ J w KQ J
33 30 32 syl J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z u J F -1 w u cls J u F -1 z w KQ J
34 toponuni KQ J TopOn ran F ran F = KQ J
35 22 2 34 3syl J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z u J F -1 w u cls J u F -1 z ran F = KQ J
36 33 35 sseqtrrd J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z u J F -1 w u cls J u F -1 z w ran F
37 funimass1 Fun F w ran F F -1 w u w F u
38 29 36 37 syl2anc J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z u J F -1 w u cls J u F -1 z F -1 w u w F u
39 26 38 mpd J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z u J F -1 w u cls J u F -1 z w F u
40 topontop J TopOn X J Top
41 22 40 syl J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z u J F -1 w u cls J u F -1 z J Top
42 elssuni u J u J
43 42 ad2antrl J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z u J F -1 w u cls J u F -1 z u J
44 eqid J = J
45 44 clscld J Top u J cls J u Clsd J
46 41 43 45 syl2anc J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z u J F -1 w u cls J u F -1 z cls J u Clsd J
47 1 kqcld J TopOn X cls J u Clsd J F cls J u Clsd KQ J
48 22 46 47 syl2anc J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z u J F -1 w u cls J u F -1 z F cls J u Clsd KQ J
49 44 sscls J Top u J u cls J u
50 41 43 49 syl2anc J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z u J F -1 w u cls J u F -1 z u cls J u
51 imass2 u cls J u F u F cls J u
52 50 51 syl J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z u J F -1 w u cls J u F -1 z F u F cls J u
53 31 clsss2 F cls J u Clsd KQ J F u F cls J u cls KQ J F u F cls J u
54 48 52 53 syl2anc J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z u J F -1 w u cls J u F -1 z cls KQ J F u F cls J u
55 simprrr J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z u J F -1 w u cls J u F -1 z cls J u F -1 z
56 44 clsss3 J Top u J cls J u J
57 41 43 56 syl2anc J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z u J F -1 w u cls J u F -1 z cls J u J
58 fndm F Fn X dom F = X
59 22 27 58 3syl J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z u J F -1 w u cls J u F -1 z dom F = X
60 toponuni J TopOn X X = J
61 22 60 syl J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z u J F -1 w u cls J u F -1 z X = J
62 59 61 eqtrd J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z u J F -1 w u cls J u F -1 z dom F = J
63 57 62 sseqtrrd J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z u J F -1 w u cls J u F -1 z cls J u dom F
64 funimass3 Fun F cls J u dom F F cls J u z cls J u F -1 z
65 29 63 64 syl2anc J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z u J F -1 w u cls J u F -1 z F cls J u z cls J u F -1 z
66 55 65 mpbird J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z u J F -1 w u cls J u F -1 z F cls J u z
67 54 66 sstrd J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z u J F -1 w u cls J u F -1 z cls KQ J F u z
68 sseq2 m = F u w m w F u
69 fveq2 m = F u cls KQ J m = cls KQ J F u
70 69 sseq1d m = F u cls KQ J m z cls KQ J F u z
71 68 70 anbi12d m = F u w m cls KQ J m z w F u cls KQ J F u z
72 71 rspcev F u KQ J w F u cls KQ J F u z m KQ J w m cls KQ J m z
73 25 39 67 72 syl12anc J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z u J F -1 w u cls J u F -1 z m KQ J w m cls KQ J m z
74 21 73 rexlimddv J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z m KQ J w m cls KQ J m z
75 74 ralrimivva J TopOn X J Nrm z KQ J w Clsd KQ J 𝒫 z m KQ J w m cls KQ J m z
76 isnrm KQ J Nrm KQ J Top z KQ J w Clsd KQ J 𝒫 z m KQ J w m cls KQ J m z
77 5 75 76 sylanbrc J TopOn X J Nrm KQ J Nrm