Metamath Proof Explorer


Theorem kqnrmlem2

Description: If the Kolmogorov quotient of a space is normal then so is the original space. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2 F = x X y J | x y
Assertion kqnrmlem2 J TopOn X KQ J Nrm J Nrm

Proof

Step Hyp Ref Expression
1 kqval.2 F = x X y J | x y
2 topontop J TopOn X J Top
3 2 adantr J TopOn X KQ J Nrm J Top
4 simplr J TopOn X KQ J Nrm z J w Clsd J 𝒫 z KQ J Nrm
5 simpll J TopOn X KQ J Nrm z J w Clsd J 𝒫 z J TopOn X
6 simprl J TopOn X KQ J Nrm z J w Clsd J 𝒫 z z J
7 1 kqopn J TopOn X z J F z KQ J
8 5 6 7 syl2anc J TopOn X KQ J Nrm z J w Clsd J 𝒫 z F z KQ J
9 simprr J TopOn X KQ J Nrm z J w Clsd J 𝒫 z w Clsd J 𝒫 z
10 9 elin1d J TopOn X KQ J Nrm z J w Clsd J 𝒫 z w Clsd J
11 1 kqcld J TopOn X w Clsd J F w Clsd KQ J
12 5 10 11 syl2anc J TopOn X KQ J Nrm z J w Clsd J 𝒫 z F w Clsd KQ J
13 9 elin2d J TopOn X KQ J Nrm z J w Clsd J 𝒫 z w 𝒫 z
14 elpwi w 𝒫 z w z
15 imass2 w z F w F z
16 13 14 15 3syl J TopOn X KQ J Nrm z J w Clsd J 𝒫 z F w F z
17 nrmsep3 KQ J Nrm F z KQ J F w Clsd KQ J F w F z m KQ J F w m cls KQ J m F z
18 4 8 12 16 17 syl13anc J TopOn X KQ J Nrm z J w Clsd J 𝒫 z m KQ J F w m cls KQ J m F z
19 simplll J TopOn X KQ J Nrm z J w Clsd J 𝒫 z m KQ J F w m cls KQ J m F z J TopOn X
20 1 kqid J TopOn X F J Cn KQ J
21 19 20 syl J TopOn X KQ J Nrm z J w Clsd J 𝒫 z m KQ J F w m cls KQ J m F z F J Cn KQ J
22 simprl J TopOn X KQ J Nrm z J w Clsd J 𝒫 z m KQ J F w m cls KQ J m F z m KQ J
23 cnima F J Cn KQ J m KQ J F -1 m J
24 21 22 23 syl2anc J TopOn X KQ J Nrm z J w Clsd J 𝒫 z m KQ J F w m cls KQ J m F z F -1 m J
25 simprrl J TopOn X KQ J Nrm z J w Clsd J 𝒫 z m KQ J F w m cls KQ J m F z F w m
26 1 kqffn J TopOn X F Fn X
27 fnfun F Fn X Fun F
28 19 26 27 3syl J TopOn X KQ J Nrm z J w Clsd J 𝒫 z m KQ J F w m cls KQ J m F z Fun F
29 10 adantr J TopOn X KQ J Nrm z J w Clsd J 𝒫 z m KQ J F w m cls KQ J m F z w Clsd J
30 eqid J = J
31 30 cldss w Clsd J w J
32 29 31 syl J TopOn X KQ J Nrm z J w Clsd J 𝒫 z m KQ J F w m cls KQ J m F z w J
33 fndm F Fn X dom F = X
34 19 26 33 3syl J TopOn X KQ J Nrm z J w Clsd J 𝒫 z m KQ J F w m cls KQ J m F z dom F = X
35 toponuni J TopOn X X = J
36 19 35 syl J TopOn X KQ J Nrm z J w Clsd J 𝒫 z m KQ J F w m cls KQ J m F z X = J
37 34 36 eqtrd J TopOn X KQ J Nrm z J w Clsd J 𝒫 z m KQ J F w m cls KQ J m F z dom F = J
38 32 37 sseqtrrd J TopOn X KQ J Nrm z J w Clsd J 𝒫 z m KQ J F w m cls KQ J m F z w dom F
39 funimass3 Fun F w dom F F w m w F -1 m
40 28 38 39 syl2anc J TopOn X KQ J Nrm z J w Clsd J 𝒫 z m KQ J F w m cls KQ J m F z F w m w F -1 m
41 25 40 mpbid J TopOn X KQ J Nrm z J w Clsd J 𝒫 z m KQ J F w m cls KQ J m F z w F -1 m
42 1 kqtopon J TopOn X KQ J TopOn ran F
43 topontop KQ J TopOn ran F KQ J Top
44 19 42 43 3syl J TopOn X KQ J Nrm z J w Clsd J 𝒫 z m KQ J F w m cls KQ J m F z KQ J Top
45 elssuni m KQ J m KQ J
46 45 ad2antrl J TopOn X KQ J Nrm z J w Clsd J 𝒫 z m KQ J F w m cls KQ J m F z m KQ J
47 eqid KQ J = KQ J
48 47 clscld KQ J Top m KQ J cls KQ J m Clsd KQ J
49 44 46 48 syl2anc J TopOn X KQ J Nrm z J w Clsd J 𝒫 z m KQ J F w m cls KQ J m F z cls KQ J m Clsd KQ J
50 cnclima F J Cn KQ J cls KQ J m Clsd KQ J F -1 cls KQ J m Clsd J
51 21 49 50 syl2anc J TopOn X KQ J Nrm z J w Clsd J 𝒫 z m KQ J F w m cls KQ J m F z F -1 cls KQ J m Clsd J
52 47 sscls KQ J Top m KQ J m cls KQ J m
53 44 46 52 syl2anc J TopOn X KQ J Nrm z J w Clsd J 𝒫 z m KQ J F w m cls KQ J m F z m cls KQ J m
54 imass2 m cls KQ J m F -1 m F -1 cls KQ J m
55 53 54 syl J TopOn X KQ J Nrm z J w Clsd J 𝒫 z m KQ J F w m cls KQ J m F z F -1 m F -1 cls KQ J m
56 30 clsss2 F -1 cls KQ J m Clsd J F -1 m F -1 cls KQ J m cls J F -1 m F -1 cls KQ J m
57 51 55 56 syl2anc J TopOn X KQ J Nrm z J w Clsd J 𝒫 z m KQ J F w m cls KQ J m F z cls J F -1 m F -1 cls KQ J m
58 simprrr J TopOn X KQ J Nrm z J w Clsd J 𝒫 z m KQ J F w m cls KQ J m F z cls KQ J m F z
59 imass2 cls KQ J m F z F -1 cls KQ J m F -1 F z
60 58 59 syl J TopOn X KQ J Nrm z J w Clsd J 𝒫 z m KQ J F w m cls KQ J m F z F -1 cls KQ J m F -1 F z
61 6 adantr J TopOn X KQ J Nrm z J w Clsd J 𝒫 z m KQ J F w m cls KQ J m F z z J
62 1 kqsat J TopOn X z J F -1 F z = z
63 19 61 62 syl2anc J TopOn X KQ J Nrm z J w Clsd J 𝒫 z m KQ J F w m cls KQ J m F z F -1 F z = z
64 60 63 sseqtrd J TopOn X KQ J Nrm z J w Clsd J 𝒫 z m KQ J F w m cls KQ J m F z F -1 cls KQ J m z
65 57 64 sstrd J TopOn X KQ J Nrm z J w Clsd J 𝒫 z m KQ J F w m cls KQ J m F z cls J F -1 m z
66 sseq2 u = F -1 m w u w F -1 m
67 fveq2 u = F -1 m cls J u = cls J F -1 m
68 67 sseq1d u = F -1 m cls J u z cls J F -1 m z
69 66 68 anbi12d u = F -1 m w u cls J u z w F -1 m cls J F -1 m z
70 69 rspcev F -1 m J w F -1 m cls J F -1 m z u J w u cls J u z
71 24 41 65 70 syl12anc J TopOn X KQ J Nrm z J w Clsd J 𝒫 z m KQ J F w m cls KQ J m F z u J w u cls J u z
72 18 71 rexlimddv J TopOn X KQ J Nrm z J w Clsd J 𝒫 z u J w u cls J u z
73 72 ralrimivva J TopOn X KQ J Nrm z J w Clsd J 𝒫 z u J w u cls J u z
74 isnrm J Nrm J Top z J w Clsd J 𝒫 z u J w u cls J u z
75 3 73 74 sylanbrc J TopOn X KQ J Nrm J Nrm