Metamath Proof Explorer


Theorem kqopn

Description: The topological indistinguishability map is an open map. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2 F = x X y J | x y
Assertion kqopn J TopOn X U J F U KQ J

Proof

Step Hyp Ref Expression
1 kqval.2 F = x X y J | x y
2 imassrn F U ran F
3 2 a1i J TopOn X U J F U ran F
4 1 kqsat J TopOn X U J F -1 F U = U
5 simpr J TopOn X U J U J
6 4 5 eqeltrd J TopOn X U J F -1 F U J
7 1 kqffn J TopOn X F Fn X
8 dffn4 F Fn X F : X onto ran F
9 7 8 sylib J TopOn X F : X onto ran F
10 9 adantr J TopOn X U J F : X onto ran F
11 elqtop3 J TopOn X F : X onto ran F F U J qTop F F U ran F F -1 F U J
12 10 11 syldan J TopOn X U J F U J qTop F F U ran F F -1 F U J
13 3 6 12 mpbir2and J TopOn X U J F U J qTop F
14 1 kqval J TopOn X KQ J = J qTop F
15 14 adantr J TopOn X U J KQ J = J qTop F
16 13 15 eleqtrrd J TopOn X U J F U KQ J