Metamath Proof Explorer


Theorem kqreg

Description: The Kolmogorov quotient of a regular space is regular. By regr1 it is also Hausdorff, so we can also say that a space is regular iff the Kolmogorov quotient is regular Hausdorff (T_3). (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion kqreg J Reg KQ J Reg

Proof

Step Hyp Ref Expression
1 regtop J Reg J Top
2 toptopon2 J Top J TopOn J
3 1 2 sylib J Reg J TopOn J
4 eqid x J y J | x y = x J y J | x y
5 4 kqreglem1 J TopOn J J Reg KQ J Reg
6 3 5 mpancom J Reg KQ J Reg
7 regtop KQ J Reg KQ J Top
8 kqtop J Top KQ J Top
9 7 8 sylibr KQ J Reg J Top
10 9 2 sylib KQ J Reg J TopOn J
11 4 kqreglem2 J TopOn J KQ J Reg J Reg
12 10 11 mpancom KQ J Reg J Reg
13 6 12 impbii J Reg KQ J Reg