Step |
Hyp |
Ref |
Expression |
1 |
|
kqval.2 |
|
2 |
1
|
kqtopon |
|
3 |
2
|
adantr |
|
4 |
|
topontop |
|
5 |
3 4
|
syl |
|
6 |
|
toponss |
|
7 |
3 6
|
sylan |
|
8 |
7
|
sselda |
|
9 |
1
|
kqffn |
|
10 |
9
|
ad3antrrr |
|
11 |
|
fvelrnb |
|
12 |
10 11
|
syl |
|
13 |
8 12
|
mpbid |
|
14 |
|
simpllr |
|
15 |
1
|
kqid |
|
16 |
15
|
ad3antrrr |
|
17 |
|
simplr |
|
18 |
|
cnima |
|
19 |
16 17 18
|
syl2anc |
|
20 |
9
|
adantr |
|
21 |
20
|
adantr |
|
22 |
|
elpreima |
|
23 |
21 22
|
syl |
|
24 |
23
|
biimpar |
|
25 |
|
regsep |
|
26 |
14 19 24 25
|
syl3anc |
|
27 |
|
simp-4l |
|
28 |
|
simprl |
|
29 |
1
|
kqopn |
|
30 |
27 28 29
|
syl2anc |
|
31 |
|
simprrl |
|
32 |
|
simplrl |
|
33 |
1
|
kqfvima |
|
34 |
27 28 32 33
|
syl3anc |
|
35 |
31 34
|
mpbid |
|
36 |
|
topontop |
|
37 |
27 36
|
syl |
|
38 |
|
elssuni |
|
39 |
38
|
ad2antrl |
|
40 |
|
eqid |
|
41 |
40
|
clscld |
|
42 |
37 39 41
|
syl2anc |
|
43 |
1
|
kqcld |
|
44 |
27 42 43
|
syl2anc |
|
45 |
40
|
sscls |
|
46 |
37 39 45
|
syl2anc |
|
47 |
|
imass2 |
|
48 |
46 47
|
syl |
|
49 |
|
eqid |
|
50 |
49
|
clsss2 |
|
51 |
44 48 50
|
syl2anc |
|
52 |
20
|
ad3antrrr |
|
53 |
|
fnfun |
|
54 |
52 53
|
syl |
|
55 |
|
simprrr |
|
56 |
|
funimass2 |
|
57 |
54 55 56
|
syl2anc |
|
58 |
51 57
|
sstrd |
|
59 |
|
eleq2 |
|
60 |
|
fveq2 |
|
61 |
60
|
sseq1d |
|
62 |
59 61
|
anbi12d |
|
63 |
62
|
rspcev |
|
64 |
30 35 58 63
|
syl12anc |
|
65 |
26 64
|
rexlimddv |
|
66 |
65
|
expr |
|
67 |
|
eleq1 |
|
68 |
|
eleq1 |
|
69 |
68
|
anbi1d |
|
70 |
69
|
rexbidv |
|
71 |
67 70
|
imbi12d |
|
72 |
66 71
|
syl5ibcom |
|
73 |
72
|
com23 |
|
74 |
73
|
imp |
|
75 |
74
|
an32s |
|
76 |
75
|
rexlimdva |
|
77 |
13 76
|
mpd |
|
78 |
77
|
anasss |
|
79 |
78
|
ralrimivva |
|
80 |
|
isreg |
|
81 |
5 79 80
|
sylanbrc |
|