Metamath Proof Explorer


Theorem kqreglem1

Description: A Kolmogorov quotient of a regular space is regular. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2 F = x X y J | x y
Assertion kqreglem1 J TopOn X J Reg KQ J Reg

Proof

Step Hyp Ref Expression
1 kqval.2 F = x X y J | x y
2 1 kqtopon J TopOn X KQ J TopOn ran F
3 2 adantr J TopOn X J Reg KQ J TopOn ran F
4 topontop KQ J TopOn ran F KQ J Top
5 3 4 syl J TopOn X J Reg KQ J Top
6 toponss KQ J TopOn ran F a KQ J a ran F
7 3 6 sylan J TopOn X J Reg a KQ J a ran F
8 7 sselda J TopOn X J Reg a KQ J b a b ran F
9 1 kqffn J TopOn X F Fn X
10 9 ad3antrrr J TopOn X J Reg a KQ J b a F Fn X
11 fvelrnb F Fn X b ran F z X F z = b
12 10 11 syl J TopOn X J Reg a KQ J b a b ran F z X F z = b
13 8 12 mpbid J TopOn X J Reg a KQ J b a z X F z = b
14 simpllr J TopOn X J Reg a KQ J z X F z a J Reg
15 1 kqid J TopOn X F J Cn KQ J
16 15 ad3antrrr J TopOn X J Reg a KQ J z X F z a F J Cn KQ J
17 simplr J TopOn X J Reg a KQ J z X F z a a KQ J
18 cnima F J Cn KQ J a KQ J F -1 a J
19 16 17 18 syl2anc J TopOn X J Reg a KQ J z X F z a F -1 a J
20 9 adantr J TopOn X J Reg F Fn X
21 20 adantr J TopOn X J Reg a KQ J F Fn X
22 elpreima F Fn X z F -1 a z X F z a
23 21 22 syl J TopOn X J Reg a KQ J z F -1 a z X F z a
24 23 biimpar J TopOn X J Reg a KQ J z X F z a z F -1 a
25 regsep J Reg F -1 a J z F -1 a w J z w cls J w F -1 a
26 14 19 24 25 syl3anc J TopOn X J Reg a KQ J z X F z a w J z w cls J w F -1 a
27 simp-4l J TopOn X J Reg a KQ J z X F z a w J z w cls J w F -1 a J TopOn X
28 simprl J TopOn X J Reg a KQ J z X F z a w J z w cls J w F -1 a w J
29 1 kqopn J TopOn X w J F w KQ J
30 27 28 29 syl2anc J TopOn X J Reg a KQ J z X F z a w J z w cls J w F -1 a F w KQ J
31 simprrl J TopOn X J Reg a KQ J z X F z a w J z w cls J w F -1 a z w
32 simplrl J TopOn X J Reg a KQ J z X F z a w J z w cls J w F -1 a z X
33 1 kqfvima J TopOn X w J z X z w F z F w
34 27 28 32 33 syl3anc J TopOn X J Reg a KQ J z X F z a w J z w cls J w F -1 a z w F z F w
35 31 34 mpbid J TopOn X J Reg a KQ J z X F z a w J z w cls J w F -1 a F z F w
36 topontop J TopOn X J Top
37 27 36 syl J TopOn X J Reg a KQ J z X F z a w J z w cls J w F -1 a J Top
38 elssuni w J w J
39 38 ad2antrl J TopOn X J Reg a KQ J z X F z a w J z w cls J w F -1 a w J
40 eqid J = J
41 40 clscld J Top w J cls J w Clsd J
42 37 39 41 syl2anc J TopOn X J Reg a KQ J z X F z a w J z w cls J w F -1 a cls J w Clsd J
43 1 kqcld J TopOn X cls J w Clsd J F cls J w Clsd KQ J
44 27 42 43 syl2anc J TopOn X J Reg a KQ J z X F z a w J z w cls J w F -1 a F cls J w Clsd KQ J
45 40 sscls J Top w J w cls J w
46 37 39 45 syl2anc J TopOn X J Reg a KQ J z X F z a w J z w cls J w F -1 a w cls J w
47 imass2 w cls J w F w F cls J w
48 46 47 syl J TopOn X J Reg a KQ J z X F z a w J z w cls J w F -1 a F w F cls J w
49 eqid KQ J = KQ J
50 49 clsss2 F cls J w Clsd KQ J F w F cls J w cls KQ J F w F cls J w
51 44 48 50 syl2anc J TopOn X J Reg a KQ J z X F z a w J z w cls J w F -1 a cls KQ J F w F cls J w
52 20 ad3antrrr J TopOn X J Reg a KQ J z X F z a w J z w cls J w F -1 a F Fn X
53 fnfun F Fn X Fun F
54 52 53 syl J TopOn X J Reg a KQ J z X F z a w J z w cls J w F -1 a Fun F
55 simprrr J TopOn X J Reg a KQ J z X F z a w J z w cls J w F -1 a cls J w F -1 a
56 funimass2 Fun F cls J w F -1 a F cls J w a
57 54 55 56 syl2anc J TopOn X J Reg a KQ J z X F z a w J z w cls J w F -1 a F cls J w a
58 51 57 sstrd J TopOn X J Reg a KQ J z X F z a w J z w cls J w F -1 a cls KQ J F w a
59 eleq2 m = F w F z m F z F w
60 fveq2 m = F w cls KQ J m = cls KQ J F w
61 60 sseq1d m = F w cls KQ J m a cls KQ J F w a
62 59 61 anbi12d m = F w F z m cls KQ J m a F z F w cls KQ J F w a
63 62 rspcev F w KQ J F z F w cls KQ J F w a m KQ J F z m cls KQ J m a
64 30 35 58 63 syl12anc J TopOn X J Reg a KQ J z X F z a w J z w cls J w F -1 a m KQ J F z m cls KQ J m a
65 26 64 rexlimddv J TopOn X J Reg a KQ J z X F z a m KQ J F z m cls KQ J m a
66 65 expr J TopOn X J Reg a KQ J z X F z a m KQ J F z m cls KQ J m a
67 eleq1 F z = b F z a b a
68 eleq1 F z = b F z m b m
69 68 anbi1d F z = b F z m cls KQ J m a b m cls KQ J m a
70 69 rexbidv F z = b m KQ J F z m cls KQ J m a m KQ J b m cls KQ J m a
71 67 70 imbi12d F z = b F z a m KQ J F z m cls KQ J m a b a m KQ J b m cls KQ J m a
72 66 71 syl5ibcom J TopOn X J Reg a KQ J z X F z = b b a m KQ J b m cls KQ J m a
73 72 com23 J TopOn X J Reg a KQ J z X b a F z = b m KQ J b m cls KQ J m a
74 73 imp J TopOn X J Reg a KQ J z X b a F z = b m KQ J b m cls KQ J m a
75 74 an32s J TopOn X J Reg a KQ J b a z X F z = b m KQ J b m cls KQ J m a
76 75 rexlimdva J TopOn X J Reg a KQ J b a z X F z = b m KQ J b m cls KQ J m a
77 13 76 mpd J TopOn X J Reg a KQ J b a m KQ J b m cls KQ J m a
78 77 anasss J TopOn X J Reg a KQ J b a m KQ J b m cls KQ J m a
79 78 ralrimivva J TopOn X J Reg a KQ J b a m KQ J b m cls KQ J m a
80 isreg KQ J Reg KQ J Top a KQ J b a m KQ J b m cls KQ J m a
81 5 79 80 sylanbrc J TopOn X J Reg KQ J Reg