| Step |
Hyp |
Ref |
Expression |
| 1 |
|
kqval.2 |
|
| 2 |
1
|
kqtopon |
|
| 3 |
2
|
adantr |
|
| 4 |
|
topontop |
|
| 5 |
3 4
|
syl |
|
| 6 |
|
toponss |
|
| 7 |
3 6
|
sylan |
|
| 8 |
7
|
sselda |
|
| 9 |
1
|
kqffn |
|
| 10 |
9
|
ad3antrrr |
|
| 11 |
|
fvelrnb |
|
| 12 |
10 11
|
syl |
|
| 13 |
8 12
|
mpbid |
|
| 14 |
|
simpllr |
|
| 15 |
1
|
kqid |
|
| 16 |
15
|
ad3antrrr |
|
| 17 |
|
simplr |
|
| 18 |
|
cnima |
|
| 19 |
16 17 18
|
syl2anc |
|
| 20 |
9
|
adantr |
|
| 21 |
20
|
adantr |
|
| 22 |
|
elpreima |
|
| 23 |
21 22
|
syl |
|
| 24 |
23
|
biimpar |
|
| 25 |
|
regsep |
|
| 26 |
14 19 24 25
|
syl3anc |
|
| 27 |
|
simp-4l |
|
| 28 |
|
simprl |
|
| 29 |
1
|
kqopn |
|
| 30 |
27 28 29
|
syl2anc |
|
| 31 |
|
simprrl |
|
| 32 |
|
simplrl |
|
| 33 |
1
|
kqfvima |
|
| 34 |
27 28 32 33
|
syl3anc |
|
| 35 |
31 34
|
mpbid |
|
| 36 |
|
topontop |
|
| 37 |
27 36
|
syl |
|
| 38 |
|
elssuni |
|
| 39 |
38
|
ad2antrl |
|
| 40 |
|
eqid |
|
| 41 |
40
|
clscld |
|
| 42 |
37 39 41
|
syl2anc |
|
| 43 |
1
|
kqcld |
|
| 44 |
27 42 43
|
syl2anc |
|
| 45 |
40
|
sscls |
|
| 46 |
37 39 45
|
syl2anc |
|
| 47 |
|
imass2 |
|
| 48 |
46 47
|
syl |
|
| 49 |
|
eqid |
|
| 50 |
49
|
clsss2 |
|
| 51 |
44 48 50
|
syl2anc |
|
| 52 |
20
|
ad3antrrr |
|
| 53 |
|
fnfun |
|
| 54 |
52 53
|
syl |
|
| 55 |
|
simprrr |
|
| 56 |
|
funimass2 |
|
| 57 |
54 55 56
|
syl2anc |
|
| 58 |
51 57
|
sstrd |
|
| 59 |
|
eleq2 |
|
| 60 |
|
fveq2 |
|
| 61 |
60
|
sseq1d |
|
| 62 |
59 61
|
anbi12d |
|
| 63 |
62
|
rspcev |
|
| 64 |
30 35 58 63
|
syl12anc |
|
| 65 |
26 64
|
rexlimddv |
|
| 66 |
65
|
expr |
|
| 67 |
|
eleq1 |
|
| 68 |
|
eleq1 |
|
| 69 |
68
|
anbi1d |
|
| 70 |
69
|
rexbidv |
|
| 71 |
67 70
|
imbi12d |
|
| 72 |
66 71
|
syl5ibcom |
|
| 73 |
72
|
com23 |
|
| 74 |
73
|
imp |
|
| 75 |
74
|
an32s |
|
| 76 |
75
|
rexlimdva |
|
| 77 |
13 76
|
mpd |
|
| 78 |
77
|
anasss |
|
| 79 |
78
|
ralrimivva |
|
| 80 |
|
isreg |
|
| 81 |
5 79 80
|
sylanbrc |
|