Step |
Hyp |
Ref |
Expression |
1 |
|
kqval.2 |
|
2 |
|
topontop |
|
3 |
2
|
adantr |
|
4 |
|
simplr |
|
5 |
|
simpll |
|
6 |
|
simprl |
|
7 |
1
|
kqopn |
|
8 |
5 6 7
|
syl2anc |
|
9 |
|
simprr |
|
10 |
|
toponss |
|
11 |
5 6 10
|
syl2anc |
|
12 |
11 9
|
sseldd |
|
13 |
1
|
kqfvima |
|
14 |
5 6 12 13
|
syl3anc |
|
15 |
9 14
|
mpbid |
|
16 |
|
regsep |
|
17 |
4 8 15 16
|
syl3anc |
|
18 |
5
|
adantr |
|
19 |
1
|
kqid |
|
20 |
18 19
|
syl |
|
21 |
|
simprl |
|
22 |
|
cnima |
|
23 |
20 21 22
|
syl2anc |
|
24 |
12
|
adantr |
|
25 |
|
simprrl |
|
26 |
1
|
kqffn |
|
27 |
|
elpreima |
|
28 |
18 26 27
|
3syl |
|
29 |
24 25 28
|
mpbir2and |
|
30 |
1
|
kqtopon |
|
31 |
|
topontop |
|
32 |
18 30 31
|
3syl |
|
33 |
|
elssuni |
|
34 |
33
|
ad2antrl |
|
35 |
|
eqid |
|
36 |
35
|
clscld |
|
37 |
32 34 36
|
syl2anc |
|
38 |
|
cnclima |
|
39 |
20 37 38
|
syl2anc |
|
40 |
35
|
sscls |
|
41 |
32 34 40
|
syl2anc |
|
42 |
|
imass2 |
|
43 |
41 42
|
syl |
|
44 |
|
eqid |
|
45 |
44
|
clsss2 |
|
46 |
39 43 45
|
syl2anc |
|
47 |
|
simprrr |
|
48 |
|
imass2 |
|
49 |
47 48
|
syl |
|
50 |
6
|
adantr |
|
51 |
1
|
kqsat |
|
52 |
18 50 51
|
syl2anc |
|
53 |
49 52
|
sseqtrd |
|
54 |
46 53
|
sstrd |
|
55 |
|
eleq2 |
|
56 |
|
fveq2 |
|
57 |
56
|
sseq1d |
|
58 |
55 57
|
anbi12d |
|
59 |
58
|
rspcev |
|
60 |
23 29 54 59
|
syl12anc |
|
61 |
17 60
|
rexlimddv |
|
62 |
61
|
ralrimivva |
|
63 |
|
isreg |
|
64 |
3 62 63
|
sylanbrc |
|