| Step |
Hyp |
Ref |
Expression |
| 1 |
|
kqval.2 |
|
| 2 |
|
topontop |
|
| 3 |
2
|
adantr |
|
| 4 |
|
simplr |
|
| 5 |
|
simpll |
|
| 6 |
|
simprl |
|
| 7 |
1
|
kqopn |
|
| 8 |
5 6 7
|
syl2anc |
|
| 9 |
|
simprr |
|
| 10 |
|
toponss |
|
| 11 |
5 6 10
|
syl2anc |
|
| 12 |
11 9
|
sseldd |
|
| 13 |
1
|
kqfvima |
|
| 14 |
5 6 12 13
|
syl3anc |
|
| 15 |
9 14
|
mpbid |
|
| 16 |
|
regsep |
|
| 17 |
4 8 15 16
|
syl3anc |
|
| 18 |
5
|
adantr |
|
| 19 |
1
|
kqid |
|
| 20 |
18 19
|
syl |
|
| 21 |
|
simprl |
|
| 22 |
|
cnima |
|
| 23 |
20 21 22
|
syl2anc |
|
| 24 |
12
|
adantr |
|
| 25 |
|
simprrl |
|
| 26 |
1
|
kqffn |
|
| 27 |
|
elpreima |
|
| 28 |
18 26 27
|
3syl |
|
| 29 |
24 25 28
|
mpbir2and |
|
| 30 |
1
|
kqtopon |
|
| 31 |
|
topontop |
|
| 32 |
18 30 31
|
3syl |
|
| 33 |
|
elssuni |
|
| 34 |
33
|
ad2antrl |
|
| 35 |
|
eqid |
|
| 36 |
35
|
clscld |
|
| 37 |
32 34 36
|
syl2anc |
|
| 38 |
|
cnclima |
|
| 39 |
20 37 38
|
syl2anc |
|
| 40 |
35
|
sscls |
|
| 41 |
32 34 40
|
syl2anc |
|
| 42 |
|
imass2 |
|
| 43 |
41 42
|
syl |
|
| 44 |
|
eqid |
|
| 45 |
44
|
clsss2 |
|
| 46 |
39 43 45
|
syl2anc |
|
| 47 |
|
simprrr |
|
| 48 |
|
imass2 |
|
| 49 |
47 48
|
syl |
|
| 50 |
6
|
adantr |
|
| 51 |
1
|
kqsat |
|
| 52 |
18 50 51
|
syl2anc |
|
| 53 |
49 52
|
sseqtrd |
|
| 54 |
46 53
|
sstrd |
|
| 55 |
|
eleq2 |
|
| 56 |
|
fveq2 |
|
| 57 |
56
|
sseq1d |
|
| 58 |
55 57
|
anbi12d |
|
| 59 |
58
|
rspcev |
|
| 60 |
23 29 54 59
|
syl12anc |
|
| 61 |
17 60
|
rexlimddv |
|
| 62 |
61
|
ralrimivva |
|
| 63 |
|
isreg |
|
| 64 |
3 62 63
|
sylanbrc |
|