Metamath Proof Explorer


Theorem kqreglem2

Description: If the Kolmogorov quotient of a space is regular then so is the original space. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2 F = x X y J | x y
Assertion kqreglem2 J TopOn X KQ J Reg J Reg

Proof

Step Hyp Ref Expression
1 kqval.2 F = x X y J | x y
2 topontop J TopOn X J Top
3 2 adantr J TopOn X KQ J Reg J Top
4 simplr J TopOn X KQ J Reg z J w z KQ J Reg
5 simpll J TopOn X KQ J Reg z J w z J TopOn X
6 simprl J TopOn X KQ J Reg z J w z z J
7 1 kqopn J TopOn X z J F z KQ J
8 5 6 7 syl2anc J TopOn X KQ J Reg z J w z F z KQ J
9 simprr J TopOn X KQ J Reg z J w z w z
10 toponss J TopOn X z J z X
11 5 6 10 syl2anc J TopOn X KQ J Reg z J w z z X
12 11 9 sseldd J TopOn X KQ J Reg z J w z w X
13 1 kqfvima J TopOn X z J w X w z F w F z
14 5 6 12 13 syl3anc J TopOn X KQ J Reg z J w z w z F w F z
15 9 14 mpbid J TopOn X KQ J Reg z J w z F w F z
16 regsep KQ J Reg F z KQ J F w F z n KQ J F w n cls KQ J n F z
17 4 8 15 16 syl3anc J TopOn X KQ J Reg z J w z n KQ J F w n cls KQ J n F z
18 5 adantr J TopOn X KQ J Reg z J w z n KQ J F w n cls KQ J n F z J TopOn X
19 1 kqid J TopOn X F J Cn KQ J
20 18 19 syl J TopOn X KQ J Reg z J w z n KQ J F w n cls KQ J n F z F J Cn KQ J
21 simprl J TopOn X KQ J Reg z J w z n KQ J F w n cls KQ J n F z n KQ J
22 cnima F J Cn KQ J n KQ J F -1 n J
23 20 21 22 syl2anc J TopOn X KQ J Reg z J w z n KQ J F w n cls KQ J n F z F -1 n J
24 12 adantr J TopOn X KQ J Reg z J w z n KQ J F w n cls KQ J n F z w X
25 simprrl J TopOn X KQ J Reg z J w z n KQ J F w n cls KQ J n F z F w n
26 1 kqffn J TopOn X F Fn X
27 elpreima F Fn X w F -1 n w X F w n
28 18 26 27 3syl J TopOn X KQ J Reg z J w z n KQ J F w n cls KQ J n F z w F -1 n w X F w n
29 24 25 28 mpbir2and J TopOn X KQ J Reg z J w z n KQ J F w n cls KQ J n F z w F -1 n
30 1 kqtopon J TopOn X KQ J TopOn ran F
31 topontop KQ J TopOn ran F KQ J Top
32 18 30 31 3syl J TopOn X KQ J Reg z J w z n KQ J F w n cls KQ J n F z KQ J Top
33 elssuni n KQ J n KQ J
34 33 ad2antrl J TopOn X KQ J Reg z J w z n KQ J F w n cls KQ J n F z n KQ J
35 eqid KQ J = KQ J
36 35 clscld KQ J Top n KQ J cls KQ J n Clsd KQ J
37 32 34 36 syl2anc J TopOn X KQ J Reg z J w z n KQ J F w n cls KQ J n F z cls KQ J n Clsd KQ J
38 cnclima F J Cn KQ J cls KQ J n Clsd KQ J F -1 cls KQ J n Clsd J
39 20 37 38 syl2anc J TopOn X KQ J Reg z J w z n KQ J F w n cls KQ J n F z F -1 cls KQ J n Clsd J
40 35 sscls KQ J Top n KQ J n cls KQ J n
41 32 34 40 syl2anc J TopOn X KQ J Reg z J w z n KQ J F w n cls KQ J n F z n cls KQ J n
42 imass2 n cls KQ J n F -1 n F -1 cls KQ J n
43 41 42 syl J TopOn X KQ J Reg z J w z n KQ J F w n cls KQ J n F z F -1 n F -1 cls KQ J n
44 eqid J = J
45 44 clsss2 F -1 cls KQ J n Clsd J F -1 n F -1 cls KQ J n cls J F -1 n F -1 cls KQ J n
46 39 43 45 syl2anc J TopOn X KQ J Reg z J w z n KQ J F w n cls KQ J n F z cls J F -1 n F -1 cls KQ J n
47 simprrr J TopOn X KQ J Reg z J w z n KQ J F w n cls KQ J n F z cls KQ J n F z
48 imass2 cls KQ J n F z F -1 cls KQ J n F -1 F z
49 47 48 syl J TopOn X KQ J Reg z J w z n KQ J F w n cls KQ J n F z F -1 cls KQ J n F -1 F z
50 6 adantr J TopOn X KQ J Reg z J w z n KQ J F w n cls KQ J n F z z J
51 1 kqsat J TopOn X z J F -1 F z = z
52 18 50 51 syl2anc J TopOn X KQ J Reg z J w z n KQ J F w n cls KQ J n F z F -1 F z = z
53 49 52 sseqtrd J TopOn X KQ J Reg z J w z n KQ J F w n cls KQ J n F z F -1 cls KQ J n z
54 46 53 sstrd J TopOn X KQ J Reg z J w z n KQ J F w n cls KQ J n F z cls J F -1 n z
55 eleq2 m = F -1 n w m w F -1 n
56 fveq2 m = F -1 n cls J m = cls J F -1 n
57 56 sseq1d m = F -1 n cls J m z cls J F -1 n z
58 55 57 anbi12d m = F -1 n w m cls J m z w F -1 n cls J F -1 n z
59 58 rspcev F -1 n J w F -1 n cls J F -1 n z m J w m cls J m z
60 23 29 54 59 syl12anc J TopOn X KQ J Reg z J w z n KQ J F w n cls KQ J n F z m J w m cls J m z
61 17 60 rexlimddv J TopOn X KQ J Reg z J w z m J w m cls J m z
62 61 ralrimivva J TopOn X KQ J Reg z J w z m J w m cls J m z
63 isreg J Reg J Top z J w z m J w m cls J m z
64 3 62 63 sylanbrc J TopOn X KQ J Reg J Reg