Metamath Proof Explorer


Theorem kqsat

Description: Any open set is saturated with respect to the topological indistinguishability map (in the terminology of qtoprest ). (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2 F = x X y J | x y
Assertion kqsat J TopOn X U J F -1 F U = U

Proof

Step Hyp Ref Expression
1 kqval.2 F = x X y J | x y
2 1 kqffn J TopOn X F Fn X
3 elpreima F Fn X z F -1 F U z X F z F U
4 2 3 syl J TopOn X z F -1 F U z X F z F U
5 4 adantr J TopOn X U J z F -1 F U z X F z F U
6 1 kqfvima J TopOn X U J z X z U F z F U
7 6 3expa J TopOn X U J z X z U F z F U
8 7 biimprd J TopOn X U J z X F z F U z U
9 8 expimpd J TopOn X U J z X F z F U z U
10 5 9 sylbid J TopOn X U J z F -1 F U z U
11 10 ssrdv J TopOn X U J F -1 F U U
12 toponss J TopOn X U J U X
13 2 fndmd J TopOn X dom F = X
14 13 adantr J TopOn X U J dom F = X
15 12 14 sseqtrrd J TopOn X U J U dom F
16 sseqin2 U dom F dom F U = U
17 15 16 sylib J TopOn X U J dom F U = U
18 dminss dom F U F -1 F U
19 17 18 eqsstrrdi J TopOn X U J U F -1 F U
20 11 19 eqssd J TopOn X U J F -1 F U = U