Metamath Proof Explorer


Theorem kqtop

Description: The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion kqtop J Top KQ J Top

Proof

Step Hyp Ref Expression
1 toptopon2 J Top J TopOn J
2 eqid x J y J | x y = x J y J | x y
3 2 kqtopon J TopOn J KQ J TopOn ran x J y J | x y
4 1 3 sylbi J Top KQ J TopOn ran x J y J | x y
5 topontop KQ J TopOn ran x J y J | x y KQ J Top
6 4 5 syl J Top KQ J Top
7 0opn KQ J Top KQ J
8 elfvdm KQ J J dom KQ
9 7 8 syl KQ J Top J dom KQ
10 ovex j qTop x j y j | x y V
11 df-kq KQ = j Top j qTop x j y j | x y
12 10 11 dmmpti dom KQ = Top
13 9 12 eleqtrdi KQ J Top J Top
14 6 13 impbii J Top KQ J Top