Metamath Proof Explorer


Theorem kqtopon

Description: The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2 F = x X y J | x y
Assertion kqtopon J TopOn X KQ J TopOn ran F

Proof

Step Hyp Ref Expression
1 kqval.2 F = x X y J | x y
2 1 kqval J TopOn X KQ J = J qTop F
3 1 kqffn J TopOn X F Fn X
4 dffn4 F Fn X F : X onto ran F
5 3 4 sylib J TopOn X F : X onto ran F
6 qtoptopon J TopOn X F : X onto ran F J qTop F TopOn ran F
7 5 6 mpdan J TopOn X J qTop F TopOn ran F
8 2 7 eqeltrd J TopOn X KQ J TopOn ran F