Metamath Proof Explorer


Theorem lactghmga

Description: The converse of galactghm . The uncurrying of a homomorphism into ( SymGrpY ) is a group action. Thus, group actions and group homomorphisms into a symmetric group are essentially equivalent notions. (Contributed by Mario Carneiro, 15-Jan-2015)

Ref Expression
Hypotheses lactghmga.x X=BaseG
lactghmga.h H=SymGrpY
lactghmga.f ˙=xX,yYFxy
Assertion lactghmga FGGrpHomH˙GGrpActY

Proof

Step Hyp Ref Expression
1 lactghmga.x X=BaseG
2 lactghmga.h H=SymGrpY
3 lactghmga.f ˙=xX,yYFxy
4 ghmgrp1 FGGrpHomHGGrp
5 ghmgrp2 FGGrpHomHHGrp
6 grpn0 HGrpH
7 fvprc ¬YVSymGrpY=
8 2 7 eqtrid ¬YVH=
9 8 necon1ai HYV
10 5 6 9 3syl FGGrpHomHYV
11 eqid BaseH=BaseH
12 1 11 ghmf FGGrpHomHF:XBaseH
13 12 ffvelcdmda FGGrpHomHxXFxBaseH
14 10 adantr FGGrpHomHxXYV
15 2 11 elsymgbas YVFxBaseHFx:Y1-1 ontoY
16 14 15 syl FGGrpHomHxXFxBaseHFx:Y1-1 ontoY
17 13 16 mpbid FGGrpHomHxXFx:Y1-1 ontoY
18 f1of Fx:Y1-1 ontoYFx:YY
19 17 18 syl FGGrpHomHxXFx:YY
20 19 ffvelcdmda FGGrpHomHxXyYFxyY
21 20 ralrimiva FGGrpHomHxXyYFxyY
22 21 ralrimiva FGGrpHomHxXyYFxyY
23 3 fmpo xXyYFxyY˙:X×YY
24 22 23 sylib FGGrpHomH˙:X×YY
25 eqid 0G=0G
26 1 25 grpidcl GGrp0GX
27 4 26 syl FGGrpHomH0GX
28 fveq2 x=0GFx=F0G
29 28 fveq1d x=0GFxy=F0Gy
30 fveq2 y=zF0Gy=F0Gz
31 fvex F0GzV
32 29 30 3 31 ovmpo 0GXzY0G˙z=F0Gz
33 27 32 sylan FGGrpHomHzY0G˙z=F0Gz
34 eqid 0H=0H
35 25 34 ghmid FGGrpHomHF0G=0H
36 35 adantr FGGrpHomHzYF0G=0H
37 10 adantr FGGrpHomHzYYV
38 2 symgid YVIY=0H
39 37 38 syl FGGrpHomHzYIY=0H
40 36 39 eqtr4d FGGrpHomHzYF0G=IY
41 40 fveq1d FGGrpHomHzYF0Gz=IYz
42 fvresi zYIYz=z
43 42 adantl FGGrpHomHzYIYz=z
44 33 41 43 3eqtrd FGGrpHomHzY0G˙z=z
45 12 ad2antrr FGGrpHomHzYuXvXF:XBaseH
46 simprr FGGrpHomHzYuXvXvX
47 45 46 ffvelcdmd FGGrpHomHzYuXvXFvBaseH
48 10 ad2antrr FGGrpHomHzYuXvXYV
49 2 11 elsymgbas YVFvBaseHFv:Y1-1 ontoY
50 48 49 syl FGGrpHomHzYuXvXFvBaseHFv:Y1-1 ontoY
51 47 50 mpbid FGGrpHomHzYuXvXFv:Y1-1 ontoY
52 f1of Fv:Y1-1 ontoYFv:YY
53 51 52 syl FGGrpHomHzYuXvXFv:YY
54 simplr FGGrpHomHzYuXvXzY
55 fvco3 Fv:YYzYFuFvz=FuFvz
56 53 54 55 syl2anc FGGrpHomHzYuXvXFuFvz=FuFvz
57 simpll FGGrpHomHzYuXvXFGGrpHomH
58 simprl FGGrpHomHzYuXvXuX
59 eqid +G=+G
60 eqid +H=+H
61 1 59 60 ghmlin FGGrpHomHuXvXFu+Gv=Fu+HFv
62 57 58 46 61 syl3anc FGGrpHomHzYuXvXFu+Gv=Fu+HFv
63 45 58 ffvelcdmd FGGrpHomHzYuXvXFuBaseH
64 2 11 60 symgov FuBaseHFvBaseHFu+HFv=FuFv
65 63 47 64 syl2anc FGGrpHomHzYuXvXFu+HFv=FuFv
66 62 65 eqtrd FGGrpHomHzYuXvXFu+Gv=FuFv
67 66 fveq1d FGGrpHomHzYuXvXFu+Gvz=FuFvz
68 53 54 ffvelcdmd FGGrpHomHzYuXvXFvzY
69 fveq2 x=uFx=Fu
70 69 fveq1d x=uFxy=Fuy
71 fveq2 y=FvzFuy=FuFvz
72 fvex FuFvzV
73 70 71 3 72 ovmpo uXFvzYu˙Fvz=FuFvz
74 58 68 73 syl2anc FGGrpHomHzYuXvXu˙Fvz=FuFvz
75 56 67 74 3eqtr4d FGGrpHomHzYuXvXFu+Gvz=u˙Fvz
76 4 ad2antrr FGGrpHomHzYuXvXGGrp
77 1 59 grpcl GGrpuXvXu+GvX
78 76 58 46 77 syl3anc FGGrpHomHzYuXvXu+GvX
79 fveq2 x=u+GvFx=Fu+Gv
80 79 fveq1d x=u+GvFxy=Fu+Gvy
81 fveq2 y=zFu+Gvy=Fu+Gvz
82 fvex Fu+GvzV
83 80 81 3 82 ovmpo u+GvXzYu+Gv˙z=Fu+Gvz
84 78 54 83 syl2anc FGGrpHomHzYuXvXu+Gv˙z=Fu+Gvz
85 fveq2 x=vFx=Fv
86 85 fveq1d x=vFxy=Fvy
87 fveq2 y=zFvy=Fvz
88 fvex FvzV
89 86 87 3 88 ovmpo vXzYv˙z=Fvz
90 46 54 89 syl2anc FGGrpHomHzYuXvXv˙z=Fvz
91 90 oveq2d FGGrpHomHzYuXvXu˙v˙z=u˙Fvz
92 75 84 91 3eqtr4d FGGrpHomHzYuXvXu+Gv˙z=u˙v˙z
93 92 ralrimivva FGGrpHomHzYuXvXu+Gv˙z=u˙v˙z
94 44 93 jca FGGrpHomHzY0G˙z=zuXvXu+Gv˙z=u˙v˙z
95 94 ralrimiva FGGrpHomHzY0G˙z=zuXvXu+Gv˙z=u˙v˙z
96 24 95 jca FGGrpHomH˙:X×YYzY0G˙z=zuXvXu+Gv˙z=u˙v˙z
97 1 59 25 isga ˙GGrpActYGGrpYV˙:X×YYzY0G˙z=zuXvXu+Gv˙z=u˙v˙z
98 4 10 96 97 syl21anbrc FGGrpHomH˙GGrpActY