Metamath Proof Explorer


Theorem latabs1

Description: Lattice absorption law. From definition of lattice in Kalmbach p. 14. ( chabs1 analog.) (Contributed by NM, 8-Nov-2011)

Ref Expression
Hypotheses latabs1.b B = Base K
latabs1.j ˙ = join K
latabs1.m ˙ = meet K
Assertion latabs1 K Lat X B Y B X ˙ X ˙ Y = X

Proof

Step Hyp Ref Expression
1 latabs1.b B = Base K
2 latabs1.j ˙ = join K
3 latabs1.m ˙ = meet K
4 eqid K = K
5 1 4 3 latmle1 K Lat X B Y B X ˙ Y K X
6 1 3 latmcl K Lat X B Y B X ˙ Y B
7 1 4 2 latleeqj2 K Lat X ˙ Y B X B X ˙ Y K X X ˙ X ˙ Y = X
8 7 3com23 K Lat X B X ˙ Y B X ˙ Y K X X ˙ X ˙ Y = X
9 6 8 syld3an3 K Lat X B Y B X ˙ Y K X X ˙ X ˙ Y = X
10 5 9 mpbid K Lat X B Y B X ˙ X ˙ Y = X