Metamath Proof Explorer


Theorem latabs2

Description: Lattice absorption law. From definition of lattice in Kalmbach p. 14. ( chabs2 analog.) (Contributed by NM, 8-Nov-2011)

Ref Expression
Hypotheses latabs1.b B = Base K
latabs1.j ˙ = join K
latabs1.m ˙ = meet K
Assertion latabs2 K Lat X B Y B X ˙ X ˙ Y = X

Proof

Step Hyp Ref Expression
1 latabs1.b B = Base K
2 latabs1.j ˙ = join K
3 latabs1.m ˙ = meet K
4 eqid K = K
5 1 4 2 latlej1 K Lat X B Y B X K X ˙ Y
6 1 2 latjcl K Lat X B Y B X ˙ Y B
7 1 4 3 latleeqm1 K Lat X B X ˙ Y B X K X ˙ Y X ˙ X ˙ Y = X
8 6 7 syld3an3 K Lat X B Y B X K X ˙ Y X ˙ X ˙ Y = X
9 5 8 mpbid K Lat X B Y B X ˙ X ˙ Y = X