Metamath Proof Explorer
		
		
		
		Description:  A lattice ordering is asymmetric.  ( eqss analog.)  (Contributed by NM, 8-Oct-2011)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | latref.b |  | 
					
						|  |  | latref.l |  | 
				
					|  | Assertion | latasym |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | latref.b |  | 
						
							| 2 |  | latref.l |  | 
						
							| 3 | 1 2 | latasymb |  | 
						
							| 4 | 3 | biimpd |  |