Metamath Proof Explorer


Theorem latasym

Description: A lattice ordering is asymmetric. ( eqss analog.) (Contributed by NM, 8-Oct-2011)

Ref Expression
Hypotheses latref.b B = Base K
latref.l ˙ = K
Assertion latasym K Lat X B Y B X ˙ Y Y ˙ X X = Y

Proof

Step Hyp Ref Expression
1 latref.b B = Base K
2 latref.l ˙ = K
3 1 2 latasymb K Lat X B Y B X ˙ Y Y ˙ X X = Y
4 3 biimpd K Lat X B Y B X ˙ Y Y ˙ X X = Y