Database
BASIC ORDER THEORY
Lattices
Lattices
latasymb
Next ⟩
latasym
Metamath Proof Explorer
Ascii
Unicode
Theorem
latasymb
Description:
A lattice ordering is asymmetric. (
eqss
analog.)
(Contributed by
NM
, 22-Oct-2011)
Ref
Expression
Hypotheses
latref.b
⊢
B
=
Base
K
latref.l
⊢
≤
˙
=
≤
K
Assertion
latasymb
⊢
K
∈
Lat
∧
X
∈
B
∧
Y
∈
B
→
X
≤
˙
Y
∧
Y
≤
˙
X
↔
X
=
Y
Proof
Step
Hyp
Ref
Expression
1
latref.b
⊢
B
=
Base
K
2
latref.l
⊢
≤
˙
=
≤
K
3
latpos
⊢
K
∈
Lat
→
K
∈
Poset
4
1
2
posasymb
⊢
K
∈
Poset
∧
X
∈
B
∧
Y
∈
B
→
X
≤
˙
Y
∧
Y
≤
˙
X
↔
X
=
Y
5
3
4
syl3an1
⊢
K
∈
Lat
∧
X
∈
B
∧
Y
∈
B
→
X
≤
˙
Y
∧
Y
≤
˙
X
↔
X
=
Y