Metamath Proof Explorer
Description: Deduce equality from lattice ordering. ( eqssd analog.) (Contributed by NM, 18-Nov-2011)
|
|
Ref |
Expression |
|
Hypotheses |
latasymd.b |
|
|
|
latasymd.l |
|
|
|
latasymd.3 |
|
|
|
latasymd.4 |
|
|
|
latasymd.5 |
|
|
|
latasymd.6 |
|
|
|
latasymd.7 |
|
|
Assertion |
latasymd |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
latasymd.b |
|
| 2 |
|
latasymd.l |
|
| 3 |
|
latasymd.3 |
|
| 4 |
|
latasymd.4 |
|
| 5 |
|
latasymd.5 |
|
| 6 |
|
latasymd.6 |
|
| 7 |
|
latasymd.7 |
|
| 8 |
1 2
|
latasymb |
|
| 9 |
3 4 5 8
|
syl3anc |
|
| 10 |
6 7 9
|
mpbi2and |
|