Metamath Proof Explorer


Theorem latcl2

Description: The join and meet of any two elements exist. (Contributed by NM, 14-Sep-2018)

Ref Expression
Hypotheses latcl2.b B = Base K
latcl2.j ˙ = join K
latcl2.m ˙ = meet K
latcl2.k φ K Lat
latcl2.x φ X B
latcl2.y φ Y B
Assertion latcl2 φ X Y dom ˙ X Y dom ˙

Proof

Step Hyp Ref Expression
1 latcl2.b B = Base K
2 latcl2.j ˙ = join K
3 latcl2.m ˙ = meet K
4 latcl2.k φ K Lat
5 latcl2.x φ X B
6 latcl2.y φ Y B
7 5 6 opelxpd φ X Y B × B
8 1 2 3 islat K Lat K Poset dom ˙ = B × B dom ˙ = B × B
9 4 8 sylib φ K Poset dom ˙ = B × B dom ˙ = B × B
10 9 simprld φ dom ˙ = B × B
11 7 10 eleqtrrd φ X Y dom ˙
12 9 simprrd φ dom ˙ = B × B
13 7 12 eleqtrrd φ X Y dom ˙
14 11 13 jca φ X Y dom ˙ X Y dom ˙