Database
BASIC ORDER THEORY
Lattices
Lattices
latcl2
Next ⟩
latlem
Metamath Proof Explorer
Ascii
Unicode
Theorem
latcl2
Description:
The join and meet of any two elements exist.
(Contributed by
NM
, 14-Sep-2018)
Ref
Expression
Hypotheses
latcl2.b
⊢
B
=
Base
K
latcl2.j
⊢
∨
˙
=
join
⁡
K
latcl2.m
⊢
∧
˙
=
meet
⁡
K
latcl2.k
⊢
φ
→
K
∈
Lat
latcl2.x
⊢
φ
→
X
∈
B
latcl2.y
⊢
φ
→
Y
∈
B
Assertion
latcl2
⊢
φ
→
X
Y
∈
dom
⁡
∨
˙
∧
X
Y
∈
dom
⁡
∧
˙
Proof
Step
Hyp
Ref
Expression
1
latcl2.b
⊢
B
=
Base
K
2
latcl2.j
⊢
∨
˙
=
join
⁡
K
3
latcl2.m
⊢
∧
˙
=
meet
⁡
K
4
latcl2.k
⊢
φ
→
K
∈
Lat
5
latcl2.x
⊢
φ
→
X
∈
B
6
latcl2.y
⊢
φ
→
Y
∈
B
7
5
6
opelxpd
⊢
φ
→
X
Y
∈
B
×
B
8
1
2
3
islat
⊢
K
∈
Lat
↔
K
∈
Poset
∧
dom
⁡
∨
˙
=
B
×
B
∧
dom
⁡
∧
˙
=
B
×
B
9
4
8
sylib
⊢
φ
→
K
∈
Poset
∧
dom
⁡
∨
˙
=
B
×
B
∧
dom
⁡
∧
˙
=
B
×
B
10
9
simprld
⊢
φ
→
dom
⁡
∨
˙
=
B
×
B
11
7
10
eleqtrrd
⊢
φ
→
X
Y
∈
dom
⁡
∨
˙
12
9
simprrd
⊢
φ
→
dom
⁡
∧
˙
=
B
×
B
13
7
12
eleqtrrd
⊢
φ
→
X
Y
∈
dom
⁡
∧
˙
14
11
13
jca
⊢
φ
→
X
Y
∈
dom
⁡
∨
˙
∧
X
Y
∈
dom
⁡
∧
˙