Step |
Hyp |
Ref |
Expression |
1 |
|
latdisd.b |
|
2 |
|
latdisd.j |
|
3 |
|
latdisd.m |
|
4 |
1 3
|
latmcl |
|
5 |
4
|
3adant3r3 |
|
6 |
|
simpr1 |
|
7 |
|
simpr3 |
|
8 |
|
oveq1 |
|
9 |
|
oveq1 |
|
10 |
|
oveq1 |
|
11 |
9 10
|
oveq12d |
|
12 |
8 11
|
eqeq12d |
|
13 |
|
oveq1 |
|
14 |
13
|
oveq2d |
|
15 |
|
oveq2 |
|
16 |
15
|
oveq1d |
|
17 |
14 16
|
eqeq12d |
|
18 |
|
oveq2 |
|
19 |
18
|
oveq2d |
|
20 |
|
oveq2 |
|
21 |
20
|
oveq2d |
|
22 |
19 21
|
eqeq12d |
|
23 |
12 17 22
|
rspc3v |
|
24 |
5 6 7 23
|
syl3anc |
|
25 |
24
|
imp |
|
26 |
|
simpl |
|
27 |
1 2
|
latjcom |
|
28 |
26 5 6 27
|
syl3anc |
|
29 |
1 2 3
|
latabs1 |
|
30 |
29
|
3adant3r3 |
|
31 |
28 30
|
eqtrd |
|
32 |
1 2
|
latjcom |
|
33 |
26 5 7 32
|
syl3anc |
|
34 |
31 33
|
oveq12d |
|
35 |
34
|
adantr |
|
36 |
|
simpr2 |
|
37 |
|
oveq1 |
|
38 |
|
oveq1 |
|
39 |
|
oveq1 |
|
40 |
38 39
|
oveq12d |
|
41 |
37 40
|
eqeq12d |
|
42 |
13
|
oveq2d |
|
43 |
|
oveq2 |
|
44 |
43
|
oveq1d |
|
45 |
42 44
|
eqeq12d |
|
46 |
|
oveq2 |
|
47 |
46
|
oveq2d |
|
48 |
|
oveq2 |
|
49 |
48
|
oveq2d |
|
50 |
47 49
|
eqeq12d |
|
51 |
41 45 50
|
rspc3v |
|
52 |
7 6 36 51
|
syl3anc |
|
53 |
52
|
imp |
|
54 |
53
|
oveq2d |
|
55 |
1 2
|
latjcl |
|
56 |
26 7 6 55
|
syl3anc |
|
57 |
1 2
|
latjcl |
|
58 |
26 7 36 57
|
syl3anc |
|
59 |
1 3
|
latmass |
|
60 |
26 6 56 58 59
|
syl13anc |
|
61 |
1 2
|
latjcom |
|
62 |
26 7 6 61
|
syl3anc |
|
63 |
62
|
oveq2d |
|
64 |
1 2 3
|
latabs2 |
|
65 |
26 6 7 64
|
syl3anc |
|
66 |
63 65
|
eqtrd |
|
67 |
1 2
|
latjcom |
|
68 |
26 7 36 67
|
syl3anc |
|
69 |
66 68
|
oveq12d |
|
70 |
60 69
|
eqtr3d |
|
71 |
70
|
adantr |
|
72 |
54 71
|
eqtrd |
|
73 |
25 35 72
|
3eqtrrd |
|
74 |
73
|
an32s |
|
75 |
74
|
ralrimivvva |
|
76 |
75
|
ex |
|