Step |
Hyp |
Ref |
Expression |
1 |
|
latjass.b |
|
2 |
|
latjass.j |
|
3 |
|
eqid |
|
4 |
|
simpl |
|
5 |
1 2
|
latjcl |
|
6 |
5
|
3adant3r3 |
|
7 |
|
simpr3 |
|
8 |
1 2
|
latjcl |
|
9 |
4 6 7 8
|
syl3anc |
|
10 |
|
simpr1 |
|
11 |
1 2
|
latjcl |
|
12 |
11
|
3adant3r1 |
|
13 |
1 2
|
latjcl |
|
14 |
4 10 12 13
|
syl3anc |
|
15 |
1 3 2
|
latlej1 |
|
16 |
4 10 12 15
|
syl3anc |
|
17 |
|
simpr2 |
|
18 |
1 3 2
|
latlej1 |
|
19 |
18
|
3adant3r1 |
|
20 |
1 3 2
|
latlej2 |
|
21 |
4 10 12 20
|
syl3anc |
|
22 |
1 3 4 17 12 14 19 21
|
lattrd |
|
23 |
1 3 2
|
latjle12 |
|
24 |
4 10 17 14 23
|
syl13anc |
|
25 |
16 22 24
|
mpbi2and |
|
26 |
1 3 2
|
latlej2 |
|
27 |
26
|
3adant3r1 |
|
28 |
1 3 4 7 12 14 27 21
|
lattrd |
|
29 |
1 3 2
|
latjle12 |
|
30 |
4 6 7 14 29
|
syl13anc |
|
31 |
25 28 30
|
mpbi2and |
|
32 |
1 3 2
|
latlej1 |
|
33 |
32
|
3adant3r3 |
|
34 |
1 3 2
|
latlej1 |
|
35 |
4 6 7 34
|
syl3anc |
|
36 |
1 3 4 10 6 9 33 35
|
lattrd |
|
37 |
1 3 2
|
latlej2 |
|
38 |
37
|
3adant3r3 |
|
39 |
1 3 4 17 6 9 38 35
|
lattrd |
|
40 |
1 3 2
|
latlej2 |
|
41 |
4 6 7 40
|
syl3anc |
|
42 |
1 3 2
|
latjle12 |
|
43 |
4 17 7 9 42
|
syl13anc |
|
44 |
39 41 43
|
mpbi2and |
|
45 |
1 3 2
|
latjle12 |
|
46 |
4 10 12 9 45
|
syl13anc |
|
47 |
36 44 46
|
mpbi2and |
|
48 |
1 3 4 9 14 31 47
|
latasymd |
|