Metamath Proof Explorer


Theorem latleeqm2

Description: "Less than or equal to" in terms of meet. (Contributed by NM, 7-Nov-2011)

Ref Expression
Hypotheses latmle.b B = Base K
latmle.l ˙ = K
latmle.m ˙ = meet K
Assertion latleeqm2 K Lat X B Y B X ˙ Y Y ˙ X = X

Proof

Step Hyp Ref Expression
1 latmle.b B = Base K
2 latmle.l ˙ = K
3 latmle.m ˙ = meet K
4 1 2 3 latleeqm1 K Lat X B Y B X ˙ Y X ˙ Y = X
5 1 3 latmcom K Lat X B Y B X ˙ Y = Y ˙ X
6 5 eqeq1d K Lat X B Y B X ˙ Y = X Y ˙ X = X
7 4 6 bitrd K Lat X B Y B X ˙ Y Y ˙ X = X