Metamath Proof Explorer


Theorem latlem

Description: Lemma for lattice properties. (Contributed by NM, 14-Sep-2011)

Ref Expression
Hypotheses latlem.b B = Base K
latlem.j ˙ = join K
latlem.m ˙ = meet K
Assertion latlem K Lat X B Y B X ˙ Y B X ˙ Y B

Proof

Step Hyp Ref Expression
1 latlem.b B = Base K
2 latlem.j ˙ = join K
3 latlem.m ˙ = meet K
4 simp1 K Lat X B Y B K Lat
5 simp2 K Lat X B Y B X B
6 simp3 K Lat X B Y B Y B
7 opelxpi X B Y B X Y B × B
8 7 3adant1 K Lat X B Y B X Y B × B
9 1 2 3 islat K Lat K Poset dom ˙ = B × B dom ˙ = B × B
10 simprl K Poset dom ˙ = B × B dom ˙ = B × B dom ˙ = B × B
11 9 10 sylbi K Lat dom ˙ = B × B
12 11 3ad2ant1 K Lat X B Y B dom ˙ = B × B
13 8 12 eleqtrrd K Lat X B Y B X Y dom ˙
14 1 2 4 5 6 13 joincl K Lat X B Y B X ˙ Y B
15 simprr K Poset dom ˙ = B × B dom ˙ = B × B dom ˙ = B × B
16 9 15 sylbi K Lat dom ˙ = B × B
17 16 3ad2ant1 K Lat X B Y B dom ˙ = B × B
18 8 17 eleqtrrd K Lat X B Y B X Y dom ˙
19 1 3 4 5 6 18 meetcl K Lat X B Y B X ˙ Y B
20 14 19 jca K Lat X B Y B X ˙ Y B X ˙ Y B