Metamath Proof Explorer


Theorem latmass

Description: Lattice meet is associative. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Hypotheses latmass.b B = Base K
latmass.m ˙ = meet K
Assertion latmass K Lat X B Y B Z B X ˙ Y ˙ Z = X ˙ Y ˙ Z

Proof

Step Hyp Ref Expression
1 latmass.b B = Base K
2 latmass.m ˙ = meet K
3 eqid ODual K = ODual K
4 3 odulat K Lat ODual K Lat
5 3 1 odubas B = Base ODual K
6 3 2 odujoin ˙ = join ODual K
7 5 6 latjass ODual K Lat X B Y B Z B X ˙ Y ˙ Z = X ˙ Y ˙ Z
8 4 7 sylan K Lat X B Y B Z B X ˙ Y ˙ Z = X ˙ Y ˙ Z