Database
BASIC ORDER THEORY
Lattices
Lattices
latmass
Next ⟩
latdisdlem
Metamath Proof Explorer
Ascii
Unicode
Theorem
latmass
Description:
Lattice meet is associative.
(Contributed by
Stefan O'Rear
, 30-Jan-2015)
Ref
Expression
Hypotheses
latmass.b
⊢
B
=
Base
K
latmass.m
⊢
∧
˙
=
meet
⁡
K
Assertion
latmass
⊢
K
∈
Lat
∧
X
∈
B
∧
Y
∈
B
∧
Z
∈
B
→
X
∧
˙
Y
∧
˙
Z
=
X
∧
˙
Y
∧
˙
Z
Proof
Step
Hyp
Ref
Expression
1
latmass.b
⊢
B
=
Base
K
2
latmass.m
⊢
∧
˙
=
meet
⁡
K
3
eqid
⊢
ODual
⁡
K
=
ODual
⁡
K
4
3
odulat
⊢
K
∈
Lat
→
ODual
⁡
K
∈
Lat
5
3
1
odubas
⊢
B
=
Base
ODual
⁡
K
6
3
2
odujoin
⊢
∧
˙
=
join
⁡
ODual
⁡
K
7
5
6
latjass
⊢
ODual
⁡
K
∈
Lat
∧
X
∈
B
∧
Y
∈
B
∧
Z
∈
B
→
X
∧
˙
Y
∧
˙
Z
=
X
∧
˙
Y
∧
˙
Z
8
4
7
sylan
⊢
K
∈
Lat
∧
X
∈
B
∧
Y
∈
B
∧
Z
∈
B
→
X
∧
˙
Y
∧
˙
Z
=
X
∧
˙
Y
∧
˙
Z