Metamath Proof Explorer


Theorem latmassOLD

Description: Ortholattice meet is associative. (This can also be proved for lattices with a longer proof.) ( inass analog.) (Contributed by NM, 7-Nov-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses olmass.b B = Base K
olmass.m ˙ = meet K
Assertion latmassOLD K OL X B Y B Z B X ˙ Y ˙ Z = X ˙ Y ˙ Z

Proof

Step Hyp Ref Expression
1 olmass.b B = Base K
2 olmass.m ˙ = meet K
3 simpl K OL X B Y B Z B K OL
4 ollat K OL K Lat
5 4 adantr K OL X B Y B Z B K Lat
6 olop K OL K OP
7 6 adantr K OL X B Y B Z B K OP
8 simpr1 K OL X B Y B Z B X B
9 eqid oc K = oc K
10 1 9 opoccl K OP X B oc K X B
11 7 8 10 syl2anc K OL X B Y B Z B oc K X B
12 simpr2 K OL X B Y B Z B Y B
13 1 9 opoccl K OP Y B oc K Y B
14 7 12 13 syl2anc K OL X B Y B Z B oc K Y B
15 eqid join K = join K
16 1 15 latjcl K Lat oc K X B oc K Y B oc K X join K oc K Y B
17 5 11 14 16 syl3anc K OL X B Y B Z B oc K X join K oc K Y B
18 simpr3 K OL X B Y B Z B Z B
19 1 15 2 9 oldmj3 K OL oc K X join K oc K Y B Z B oc K oc K X join K oc K Y join K oc K Z = oc K oc K X join K oc K Y ˙ Z
20 3 17 18 19 syl3anc K OL X B Y B Z B oc K oc K X join K oc K Y join K oc K Z = oc K oc K X join K oc K Y ˙ Z
21 1 9 opoccl K OP Z B oc K Z B
22 7 18 21 syl2anc K OL X B Y B Z B oc K Z B
23 1 15 latjass K Lat oc K X B oc K Y B oc K Z B oc K X join K oc K Y join K oc K Z = oc K X join K oc K Y join K oc K Z
24 5 11 14 22 23 syl13anc K OL X B Y B Z B oc K X join K oc K Y join K oc K Z = oc K X join K oc K Y join K oc K Z
25 24 fveq2d K OL X B Y B Z B oc K oc K X join K oc K Y join K oc K Z = oc K oc K X join K oc K Y join K oc K Z
26 1 15 2 9 oldmj4 K OL X B Y B oc K oc K X join K oc K Y = X ˙ Y
27 26 3adant3r3 K OL X B Y B Z B oc K oc K X join K oc K Y = X ˙ Y
28 27 oveq1d K OL X B Y B Z B oc K oc K X join K oc K Y ˙ Z = X ˙ Y ˙ Z
29 20 25 28 3eqtr3rd K OL X B Y B Z B X ˙ Y ˙ Z = oc K oc K X join K oc K Y join K oc K Z
30 1 15 latjcl K Lat oc K Y B oc K Z B oc K Y join K oc K Z B
31 5 14 22 30 syl3anc K OL X B Y B Z B oc K Y join K oc K Z B
32 1 15 2 9 oldmj2 K OL X B oc K Y join K oc K Z B oc K oc K X join K oc K Y join K oc K Z = X ˙ oc K oc K Y join K oc K Z
33 3 8 31 32 syl3anc K OL X B Y B Z B oc K oc K X join K oc K Y join K oc K Z = X ˙ oc K oc K Y join K oc K Z
34 1 15 2 9 oldmj4 K OL Y B Z B oc K oc K Y join K oc K Z = Y ˙ Z
35 34 3adant3r1 K OL X B Y B Z B oc K oc K Y join K oc K Z = Y ˙ Z
36 35 oveq2d K OL X B Y B Z B X ˙ oc K oc K Y join K oc K Z = X ˙ Y ˙ Z
37 29 33 36 3eqtrd K OL X B Y B Z B X ˙ Y ˙ Z = X ˙ Y ˙ Z