Metamath Proof Explorer


Theorem latmcl

Description: Closure of meet operation in a lattice. ( incom analog.) (Contributed by NM, 14-Sep-2011)

Ref Expression
Hypotheses latmcl.b B = Base K
latmcl.m ˙ = meet K
Assertion latmcl K Lat X B Y B X ˙ Y B

Proof

Step Hyp Ref Expression
1 latmcl.b B = Base K
2 latmcl.m ˙ = meet K
3 eqid join K = join K
4 1 3 2 latlem K Lat X B Y B X join K Y B X ˙ Y B
5 4 simprd K Lat X B Y B X ˙ Y B