Database
BASIC ORDER THEORY
Lattices
Lattices
latmidm
Next ⟩
latabs1
Metamath Proof Explorer
Ascii
Unicode
Theorem
latmidm
Description:
Lattice meet is idempotent. Analogue of
inidm
.
(Contributed by
NM
, 8-Nov-2011)
Ref
Expression
Hypotheses
latmidm.b
⊢
B
=
Base
K
latmidm.m
⊢
∧
˙
=
meet
⁡
K
Assertion
latmidm
⊢
K
∈
Lat
∧
X
∈
B
→
X
∧
˙
X
=
X
Proof
Step
Hyp
Ref
Expression
1
latmidm.b
⊢
B
=
Base
K
2
latmidm.m
⊢
∧
˙
=
meet
⁡
K
3
eqid
⊢
≤
K
=
≤
K
4
simpl
⊢
K
∈
Lat
∧
X
∈
B
→
K
∈
Lat
5
1
2
latmcl
⊢
K
∈
Lat
∧
X
∈
B
∧
X
∈
B
→
X
∧
˙
X
∈
B
6
5
3anidm23
⊢
K
∈
Lat
∧
X
∈
B
→
X
∧
˙
X
∈
B
7
simpr
⊢
K
∈
Lat
∧
X
∈
B
→
X
∈
B
8
1
3
2
latmle1
⊢
K
∈
Lat
∧
X
∈
B
∧
X
∈
B
→
X
∧
˙
X
≤
K
X
9
8
3anidm23
⊢
K
∈
Lat
∧
X
∈
B
→
X
∧
˙
X
≤
K
X
10
1
3
latref
⊢
K
∈
Lat
∧
X
∈
B
→
X
≤
K
X
11
1
3
2
latlem12
⊢
K
∈
Lat
∧
X
∈
B
∧
X
∈
B
∧
X
∈
B
→
X
≤
K
X
∧
X
≤
K
X
↔
X
≤
K
X
∧
˙
X
12
4
7
7
7
11
syl13anc
⊢
K
∈
Lat
∧
X
∈
B
→
X
≤
K
X
∧
X
≤
K
X
↔
X
≤
K
X
∧
˙
X
13
10
10
12
mpbi2and
⊢
K
∈
Lat
∧
X
∈
B
→
X
≤
K
X
∧
˙
X
14
1
3
4
6
7
9
13
latasymd
⊢
K
∈
Lat
∧
X
∈
B
→
X
∧
˙
X
=
X